
Programme ANR VERSO

Projet VIPEER

Ingénierie du trafic vidéo en intradomaine basée
sur les paradigmes du Pair à Pair

Décision no 2009 VERSO 014 01 à 06 du 22 décembre 2009
T0 administratif = 15 Novembre 2009

T0 technique = 1er Janvier 2010

Livrable 5.5
Evaluation of the demonstrations

Auteurs:
M.K Sbai, G Madec, P Mitharwal, A Gravey

, G Simon(Telecom Bretagne), J Kypreos(Envivio) , F Guillemin,
S Moteau, P Philippe (OrangeLab), Y Hadjadjaoul (Inria),

J Garnier (NDS)
Editeur:

M.K Sbai, G Madec, , A Gravey (Telecom Bretagne)

Décembre 2012

Telecom Bretagne; Eurecom; INRIA; France Telecom; NDS; ENVIVIO

Abstract

The main objective of the VIPEER project is to provide methods allowing a network
operator to have explicit control on traffic flows related to video distribution. The
work package 5 mainly consists of implementing and deploying the VIPEER architec-
ture on an inter-partner platform. It also designs the test scenarios, demonstrations
and evaluates the obtained results. This document describes the evaluation of the
demonstrations. This evaluation is based on implementing, running and testing the
final demonstration scenarios described in D5.3.

2

Contents

Contents 3
1 Introduction . 4
2 Architecture of the platform . 4
3 Actors: Software components . 5

3.1 Streaming components . 5
3.2 Scenario-controlling components 7
3.3 Monitoring components . 8

4 Scenarios of the experiments . 9
4.1 The video . 9
4.2 Classes of clients . 10
4.3 Scenarios . 10

5 Results and evaluation . 11
5.1 Results of experiments . 12
5.2 Evaluation . 14

6 Conclusions . 17

3

1. Introduction

1 Introduction

The main objective of VIPEER is to allow NSPs control video traffic transiting in
their domains. On one hand, VIPEER allow them to minimize the inter-domain
traffic by deploying some streaming servers inside the operator domain. On the
other hand, clients will be server by a set of servers constructing together a local
CDN called dCDN. The selection of the streaming server (dCDN server) when ask-
ing for a new chunk plays a major role in optimizing the video traffic and in the
quality of experience (QoE) perceived by the clients. Different software components
implicated in a dCDN have been developed inside the VIPEER consortium and have
been tested on a platform that consists of an interconnection of Project partner-sites.

This deliverable is the last one from the WP5. In this document, we describe the
experiments and their results. The objective is to evaluate the implemented com-
ponents on the established test architecture. The experiments have been conducted
on inter-partner platform described in Section 2. The different software components
developed for the purpose of experimentation have been deployed on different ma-
chines located at these sites. A reminder of these components and their placement
on different partner machines is described in Section 3. Using this material and soft-
ware testbed, we was able to run different test scenarios described in D5.3. They are
summarized in Section 4. The evaluation of the tests and their results is discussed
in details in Section 5.

2 Architecture of the platform

The partners of the project VIPEER decided to inter-connect some machines lo-
cated at their different sites and to dedicate them for the test experiments . These
machines connected together form an emulation of an operator network mainly the
machines represent the intra-domain streaming servers and clients. The sites impli-
cated in this platform are:

• TELECOM Bretagne, Brest, France

• Orange Labs, Lannion, France

• INRIA, Rennes, France

NDS Limited, Paris has rented a dedicated server at Amazon to play the role of the
original external CDN. This server is located at Dublin, Ireland.

The interconnection network is the public Internet. Each of the server machines
is addressed by a public IP address. The clients can be located behind NAT servers.
Table 1 describes the different machines implicated in the platform.

Figure 1 locates the different machines of the dCDN and the original CDN on a
map.

4

3. Actors: Software components

Table 1: Machines of the platform

Site Machine Label IP Address OS Special Main
packages role

INRIA, Rennes Linux machine 131.*.*.34 Linux Oracle java 7 dCDN streaming
Rennes Tomcat 6 server

Windows machine *.*.*.* Windows Oracle java 7 streaming
Rennes not public clients

Orange Labs, Linux machine 193.*.*.6 Linux Oracle java 7 dCDN streaming
Lannion Lannion Tomcat 6 server

Windows machine *.*.*.* Windows Oracle java 7 streaming
Lannion not public clients

TELECOM Linux machine 193.*.*.203 Linux Oracle java 7 dCDN streaming
Bretagne, Brest 1 Tomcat 6 server

Brest
Linux machine 193.*.*.204 Linux Oracle java 7 dTracker

Brest 2 Tomcat 6
MySQL server

Windows machine *.*.*.* Windows Oracle java 7 streaming
Brest not public clients

Amazon, Linux machine 54.*.*.156 Linux Oracle java 7 CDN streaming
Dublin, Amazon Tomcat 6 server
Ireland

3 Actors: Software components

In this section, we summarize the software components and their deployment on
different machines of the platform. These components can be divided following
their roles into two sets: Monitoring components, Scenario-controlling com-
ponents and Streaming components; and following their locations into 3 sets:
Streaming server-side components, Client-side components and Central
intelligence components.

3.1 Streaming components

Streaming software components are components that together implement the stream-
ing functionalities.

Central intelligence components:

• MPD constructor Servlet

– Location: Linux machine Brest 2

– Role: When a client asks to stream a new video to the original CDN
server, it must download a media description file called MPD. This file

5

3. Actors: Software components

Figure 1: Testbed architecture

contains the URLs of the different chunks of the video. In the case of the
presence of a dCDN, the original CDN server redirects the client to the
MPD constructor Servlet which constructs an MPD specific to the client.
All the URLs of the chunks, in this MPD, are links to a Redirection
Servlet that will redirect it later to the best chunk server.

– Technology: Java Web Servlet

• Redirection Servlet

– Location: Linux machine Brest 2

– Role: When requesting a chunk, the client contacts the Redirection
Servlet which computes following a specific selection strategy the best
dCDN server from where to get the chunk. The information of the cur-
rent placement of the chunks and the network/server conditions are stored
in the system’s database.

– Technology: Java Web Servlet

• System’s database

– Location: Linux machine Brest 2

– Role: This database contains information about the placement of chunks,
the different available servers, monitoring information, etc

– Technology: MySQL server

6

3. Actors: Software components

Streaming server-side components:

• Tomcat HTTP server

– Locations: Linux machine Brest 1, Linux machine Rennes, Linux machine
Lannion, Linux machine Amazon

– Role: It is a HTTP server that serves chunks of different videos organized
in its local system folders.

– Technology: Web server

Client-side components:

• VLC DASH client

– Locations: Windows machine Brest , Windows machine Rennes, Windows
machine Lannion

– Role: The VLC DASH client is a classical adaptive http streaming client.
It is supposed to adapt the bitrate of the requested chunks to the delay
of the reception of chunks. However, the current version of VLC is not
really compliant to the automatic regulation of the bitrate as stated in
the standard.

– Technology: MPEG-DASH standard to be published as ISO/IEC 23009,
2013. The VLC client version used is: VLC 2.1.0

3.2 Scenario-controlling components

Scenario-controlling software components are components that allow to run remotely
streaming sessions on clients located at partner sites.

Central intelligence components:

• Scenario Controller

– Locations: Linux machine Brest 2

– Role: This is a server to whom different Session Launchers located at
client machines connect. It reads the scenarios from the system’s database
and send ”START”, ”STOP” scenario/session messages to the Launchers.
The Scenarios are entred by a user through the system’s graphic interface.

– Technology: Java, TCP sockets

• Web interface

– Locations: Linux machine Brest 2

– Role: The web interface allows to introduce the scenario (streaming ses-
sion) to be run and to follow the results in real time.

– Technology: Java script

7

3. Actors: Software components

Streaming server-side components:

For experimental reasons, it is possible for the ”Measurement controller”, described
later in this section, to throttle the bandwidth of any of the dCDN Servers. It sends
then a message only to the concerned ”Measurement Node”. The latter uses the
Linux kernel TC command to limit the upload capacity of its network interface.
This limitation of the upload available bandwidth is considered in our platform in
order to allow experimenting with overloaded servers.

Client-side components:

• Session Launcher

– Locations: Windows machine Brest , Windows machine Rennes, Windows
machine Lannion

– Role: This software component acts as a client for the Scenario controller
from whom it receives the URL of the MPDs of videos to stream. It can
also receive an order to stop a running streaming session.

– Technology: Java, TCP sockets

3.3 Monitoring components

Monitoring software components are components that allow to run remotely stream-
ing sessions on clients located at partner sites.

Central intelligence components:

• Measurement Controller

– Locations: Linux machine Brest 2

– Role: The Measurement Controller Server is the controller unit which
communicates with all the measurement nodes located in dCDN Servers.
Whenever a client gets connected/disconnected, the Controller sends a
message to all measurement nodes and order them to start/stop measure-
ments of RTT(Round Trip Time) to this client.
Measurement components at dCDN Servers are periodically sending the
current upload rate to the measurement controller in order to compute the
available upload bandwidth (Availableuploadrate = maximumuploadcapacity−
uploadrate).

– Technology: Java, TCP sockets

Streaming server-side components:

• Measurement Node

– Locations: Linux machine Brest 1, Linux machine Rennes, Linux machine
Lannion, Linux machine Amazon

8

4. Scenarios of the experiments

– Role: The following instructions summarize the functionalities of a mea-
surement node located at one of the dCDN Servers:

1. Open in-out connection for the Measurement Controller Server port.

2. Calculate Current Upload rate using ”tc” command.

3. Read messages from the Controller:

∗ If the Measurement node receives a ”START measurement” mes-
sage for a client, this client will be added to the active clients’ list.
The ping command is then used for measuring RTT between the
server and all the clients present in the active list. These mea-
surements are done periodically (a period of 10sec. has been
selected in our experiments).

∗ If the measurement node receives a ”STOP measurement” mes-
sage for a client and if it is already measuring RTT for this client,
it will be deleted from the list.

∗ Only in the experimental testbed, if the server receives a ”Start
Rate Control” message, it will control the maximum upload rate
using ”tc” commands.

4. Send back results of measurements periodically to the controller.

– Technology: Java, TCP sockets, tc, ping

Client-side components:

No monitoring components are installed on client side.

4 Scenarios of the experiments

In this section, we describe the scenarios of the experiments which we have conducted
on our platform.

4.1 The video

The video stream is temporally segmented into chunks. Each of the chunks is an
encoded video with AVC (MPEG4-10 ”Advanced Video Coding” / H264) using a
specific bitrate. The server will provide to clients different bitrate levels.

We used the following video:

• Video Name: OfForestAndMen

• Duration: 10:53

• Chunk duration: 1s

• Chunk format: MP4

• Supported bitrates: 900 Kbit/s to 3000 Kbit/s

9

4. Scenarios of the experiments

Figure 2 represents two screenshots taken from the video at the same moment with
the two different bitrates. The system can shift the client’s streaming rate when
there is not enough capacity on dCDN servers.

Figure 2: Video quality

4.2 Classes of clients

An operator or a content provider would like to have different classes of clients
depending on their billing strategy. Two classes of clients have been defined based
on much of the total capacity of a streaming server the client can see. The classes
of clients is represented in Figure 3

Figure 3: Classes of clients

• Gold Client: It sees 100% of the total capacity of streaming servers. It keeps
the best rate during a longer period in case of overloaded servers.

• Silver Client: It sees only 75% of the total capacity of streaming servers. In
case of an overloaded server, it is among the first clients to change streaming
server or to downgrade the streaming rate.

4.3 Scenarios

In each of the scenarios described later, the Brest Client (Windows machine Brest)
is asked by the Scenario Controller to run 4 streaming sessions of the video OfFore-
sAndMen in parallel:

• 3 Gold streaming session with a maximum bitrate of 3000kbit/s

• 1 Silver streaming session with a maximum bitrate of 3000kbit/s

The maximum available upload bandwidths of the dCDN servers and the original
CDN server are kept to their maximum at the beginning of each experiment. After

10

5. Results and evaluation

some seconds, they are gradually throttled down to reach 5 Mbit/s. In our tests,
this occurs starting from the 30sec. of streaming.

Two main scenarios have been defined depending on whether we use or not the
dCDN servers:

Scenario 1: Classical DASH algorithm

In this scenario, the dCDN servers are not used to stream chunks. The clients
retrieve all the chunks from the original CDN server located in Ireland. The objective
of this scenario is to evaluate the classical DASH algorithm. Mainly, one can see the
impact of reducing the available upload capacity of the original CDN server on the
bitrates of the 4 streaming sessions (3 Gold and 1 Silver). One can then conclude
on the Quality of Experience perceived by the users. In this scenario, it is evident
that 100% of the streaming traffic go through inter-domain links.

Scenario 2: Network-friendly DASH algorithm

In this scenario, the dCDN servers are used to stream chunks. The implemented
server selection strategy is very simple. It can be summarized in three steps. If the
condition in one of the steps is fulfilled, this means that a server has been selected
and the algorithm of selection does not move to the next step. Otherwise, it con-
tinues with the next step:

1. If there is some dCDN servers that can stream at full rate to the client (i.e
available bandwidth > video full rate), select the nearest server. The metric
used for this selection is the RTT (round-trip time)

2. If there is some dCDN servers that can stream at degraded rate to the client
(available bandwidth > degraded), select the nearest server. The metric used
for this selection is the RTT (round-trip time).

3. Redirect the client to the original CDN server.

Figure 4 plots the server selection strategy at the dTracker level.
The objective here is to evaluate the impact of using the dCDN servers on the

inter-domain traffic and on the quality of service received by clients.

5 Results and evaluation

In this section, we describe the results of the experiments conducted to test the two
scenarios described earlier. Then, we evaluate this results from the VIPEER project
perspectives.

11

5. Results and evaluation

Figure 4: dCDN Server Selection strategy

5.1 Results of experiments

Results of experiments in case of Scenario 1

In this scenario, we run three streaming sessions (3 Golds and 1 Silver) in parallel.
The chunks are exclusively retrieved from the original server. Figure 5 plots the
streaming bitrate of the four sessions as a function of session time. It shows that
at the beginning of each session the rate is at the maximum 3000 kbit/s then after
30sec. when the bandwidth throttling occurs the Silver client is the first to diminish
its bitrates to 900 kbit/s. In fact, it sees only 75% of the available upload rate on the
original CDN server. After some seconds, the Gold session begin also to diminish
their bitrates as the global available upload rates is not enough to run 3 sessions
in parralel. The available upload rate on the CDN server is shown in Figure 6. It
shows that at second 50 the available upload rate is 5000 Mbit/s.

In this scenario, the streaming traffic is 100% inter-domain as the dCDN servers
are not activated. This can be seen in Figure 6 where the available upload rates of
the three dCDN rates do not varie and stay at their maximum values.

Results of experiments in case of Scenario 2

In this scenario, we run three streaming sessions (3 Golds and 1 Silver) in parallel.
The chunks can be retrieved either from the dCDN servers or the original CDN
server following the selection strategy explained earlier in this document. Figure
7 plots the streaming bitrate of the four sessions as a function of session time.
It shows that at the beginning of each session the rate is at the maximum 3000

12

5. Results and evaluation

Figure 5: Rate of the Chunks during streaming session for different classes of clients

Figure 6: Available Upload bandwidth of different servers

kbit/s then after 30sec. when the bandwidth throttling occurs (see figure 8) all
the clients even the Silver one is still streaming at the highest rate. Hence, our
optimized DASH algorithm allows to serve clients with a better quality of service.
The following results focus on the available upload rate and RTT metrics measured
by the monitoring components during the same experiments.

Figure 9 plots the Round-Trip Time (RTT) metric measured between two clients
and different streaming servers (the CDN server (54.*.*.156) and the dCDN servers

13

5. Results and evaluation

located at partner sites) during a streaming experiment. The first client is located
at INRIA, Rennes and the second one at Telecom Bretagne, Brest. The figure shows
that even if a server can be the nearest to a client at the beginning of a streaming
session, its RTT can become greater when the load of streaming requests increases.
That is why, it is worthy for the system to select another farther dCDN server for
the client. For instance, at the beginning of a session, the nearest server for the
client located at Brest was, as shown in the figure, the brest dCDN server. When
the Brest server has become overloaded, the RTT between the Brest client and the
Brest server has become greater than the RTT between it and the Lannion dCDN
server. One can imagine that at this moment the Brest client will be streaming
chunks from the Lannion dCDN server.

The second monitored metric is the available bandwidth at servers. It is shown
in Figure 8 which shows mainly that, unlike the original CDN server, dCDNs servers
are used to stream chunks . The load of the streaming task is almost equilibrated
between the three dCDN servers. Hence, there is almost no inter-domain traffic
which one of the main goals of VIPEER.

Figure 7: Rate of the Chunks during streaming session for different classes of clients

5.2 Evaluation

The criteria of the evaluation are:

• Feasibility of the scenario:

– Communication between partner sites

– Measurement of network conditions and QoS

14

5. Results and evaluation

Figure 8: Available Upload bandwidth of different servers

Figure 9: RTT between clients and servers

• Performance and Efficiency:

– Efficiency of the video streaming from client point of view

– Efficiency from network point of view

Evaluation in case of Scenario 1

• Feasibility of the scenario:

15

5. Results and evaluation

– Communication between partner sites: OK with public IP ad-
dresses. Clients located at Brest can connect easily to the Amazon CDN
server (54.*.*.156)

– Measurement of network conditions and QoS: OK. Our measure-
ment tools are running both on client side and server side. (Figure 6 shows
a tracking of the available upload bandwidth on the original server)

• Performance and Efficiency:

– Efficiency of the video streaming from client point of view: As
the classical algorithm is run, while there is enough available upload
bandwidth on the path and the server capacity is not reached, the client
can keep streaming at the highest rate (3000 kbit/s). When the server
upload capacity is delimited the clients are obliged to diminish the quality
it streams to 900 kbit/s. Figure 5 shows that silver clients are the first to
change the rate as they see only 75% of the total capacity of the server,
the gold clients are constantly changing from best to medium rate. The
tests are OK but they show that our optimization using dCDN servers is
worthy.

– Efficiency from network point of view: We see here that for all
chunks and for all clients the traffic (See Figure 6) the traffic comes from
the CDN server that means that the classical algorithm does not take into
consideration any NSP cost consideration. The traffic is 100% originating
from a server located at another carrier. Thus, a very important inter-
carrier traffic.

Evaluation in case of Scenario 2

• Feasibility of the scenario:

– Communication between partner sites: OK with public IP addresses

∗ Clients located at Brest can connect easily to the Amazon CDN server
(54.*.*.156)

∗ Clients located at Brest can connect easily to servers located at TB
Brest Orange Labs Lannion and INRIA Rennes.

– Measurement of network conditions and QoS: OK. Our measure-
ment tools are running both on client side and server side. Figure 8 and
9 show respectively a tracking of the available upload bandwidth on the
original server and dCDN servers; and the delays (RTT) between clients
and different servers

• Performance and Efficiency:

– Efficiency of the video streaming from client point of view: As
dCDN servers are activated the client will be served from the nearest
available server. The available bandwidth between the selected server
and the client is the best at any moment of the streaming session. Figure

16

6. Conclusions

7 shows that for all the streaming servers (gold and silver) keep streaming
at the highest rate even if we limit the capacity of the original server (or
any other dCDN server); it always finds the best location to stream the
current chunk.

– Efficiency from network point of view: As figure 8 show the dCDN
servers are solicited more than the original server there is a gain of at
least 95% on inter-carrier traffic. And also the video traffic inside the
operator network is controlled by it.

6 Conclusions

In this deliverable, we presented the test scenarios and their evaluation. Our exper-
iments allowed us to validate that we have fulfilled many of the initial goals of the
VIPEER project. For instance, we show that deploying a local CDN (dCDN) in the
operator network allows to economize 95% of transit traffic and to have better qual-
ity of service observed by streaming clients. Future work in experimentation and
validation can be adding new user-level metrics such as QoE opinion main scores
both for the decision and for the monitoring phases.

17

