
Programme ANR VERSO

Projet VIPEER

Ingénierie du trafic vidéo en intradomaine basée

sur les paradigmes du Pair à Pair

Décision no 2009 VERSO 014 01 à 06 du 22 décembre 2009
T0 administratif = 15 Novembre 2009

T0 technique = 1er Janvier 2010

Deliverable 4.3
Report on CDN/dCDN design

Auteurs:
C. Bothorel (Telecom Bretagne), Z. Li (Telecom Bretagne), P.

Michiardi (Eurocom),
Y. Hadjadj-Aoul (INRIA), J. Garnier (NDS Technologies France)

Edited by:
J. Garnier (NDS Technologies France)

February 2012

Telecom Bretagne; Eurocom; INRIA; NDS Technologies

Abstract

This document aims to present the report on the CDN / dCDN design. As you can
see in the architecture and the work done during the previous deliverables, VIPEER
will manage a huge amount of data, regarding: 1. network: routing, numbers of
routers (cache configuration), bandwith... 2. chunks: each movies is split in many
chuncks depends on the quality, the aspect ratio... 3. users informations: region,
devices, historique. That’s why we introduce the Parallel Processing as we need a
method for processing large amount of data in a efficient way. For exemple, if you
want to distribute the chuncks based on network information traffic or you want to
predict the video consumption of a user based on the analysis of all the sytem log
files, this represents a huge amount of data. On the second part and based on the
preliminary report, we have identified that a recommender engine can be used in
the dTracker once distributing the chuncks. Finally, we will see how to arrange the
placement of video content in a large-scale distributed Content Delivery Network
(dCDN) system in order to have the optimal placement using the previous work on
the prediction and recommendation and also the MapReduce framework.

Keywords: Prefetching, Map reduce, Genetic Algorithm.

3

Contents

1 Preface 7
1.1 Purpose of this document . 7
1.2 Referenced ViPeeR deliverables . 7

2 Parallel Processing in VIPEER 9
2.1 MapReduce Background . 9
2.2 Scheduling MapReduce Jobs . 10

2.2.1 Introduction . 10
2.2.2 The Scheduling Protocol . 12
2.2.3 Implementation details . 16
2.2.4 Conclusions and Future Work 18

3 Prefetching 19
3.1 Introduction . 19
3.2 Related work in the VoD distribution context 20
3.3 Scientific and technological challenges 21
3.4 Recommender systems . 22
3.5 MapReduce Recommendation . 23

3.5.1 VoD downloads dataset . 23
3.5.2 Apache Mahout boolean recommender 25

3.6 Evaluation . 27
3.6.1 Realistic chronological scenario 27
3.6.2 Netflix scenario: fixed k recommendations, testing with the

K latest downloads . 28
3.6.3 Adaptative scenario: variable k above a threshold, testing

with the K latest downloads 28
3.7 Is recommendation relevant for Vipeer? 29
3.8 Conclusion . 30

4 Optimal placement of video content 33
4.1 Introduction . 33
4.2 Problem Formulation . 34
4.3 Introduction of Genetic Algorithm . 35

4.3.1 Basic Elements . 35
4.3.2 Typical Procedure . 35

4.4 Modeling k-PCFLP by Genetic Algorithm 36
4.4.1 Encoding . 36

4

Contents

4.4.2 Fitness Function . 36
4.4.3 Initialization and selection . 38
4.4.4 Crossover and Mutation . 38
4.4.5 Replacement and Termination 39

4.5 Perspective of Using MapReduce . 39

5 Conclusion 41

42

Bibliography 43

5

1 Preface

1.1 Purpose of this document

This document aims to present the report on the CDN / dCDN design. As you can
see in the architecture and the work done during the previous deliverables, ViPeeR
will manage a huge amount of data, regarding: 1. network: routing, numbers of
routers (cache configuration), bandwith... 2. chunks: each movies is split in many
chuncks depends on the quality, the aspect ratio... 3. users informations: region,
devices, historique. That’s why we introduce the Parallel Processing as we need a
method for processing large amount of data in a efficient way which is implemented
in Hadoop. But why did we decide to use it? Traditional distributed systems have
to deal with: - far more data than was the case in the past (Facebook: over 70
PB of data) - generate data at a rate of terabytes per day - data was stored on a
SAN and copied to the compute nodes (transfer and synchro issues) - spend a lot of
times to design system for failure rather than investigation on solving the problem
with data - data becomes the bottleneck Hadoop: the proposal * system must
support partial failure * when a component fails, its workload should be assumed by
another functioning unit in the system * a failed component that recovers can rejoin
the system (no full system restart) * partial failure during job execution shall not
affect the results of the job * adding / removing component resources shall result in
proportional decline or increase of load capacity

On the second part and based on the preliminary report, we have identified that
a recommender engine can be used in the dTracker once distributing the chuncks.
Finally, we will see how to arrange the placement of video content in a large-scale
distributed Content Delivery Network (dCDN) system in order to have the optimal
placement using the previous work on the prediction and recommendation and also
the MapReduce framework.

1.2 Referenced ViPeeR deliverables

Table 1 lists documents and other reference sources containing information that may
be essential to understanding topics in this document.

7

1. Preface

No Designation Title
1. D4.1 State of the Art
2. D4.2 Preliminary report on the CDN/dCDN design

8

2 Parallel Processing in VIPEER

In this Section we first provide a short backround description of MapReduce, a
popular parallel processing framework, underlying the components that are relevant
for our work on scheduling analytic jobs, which we present in Sec. 2.2.

2.1 MapReduce Background

Before delving into the details of the inner functoning of MapReduce, we introcuce
this Section by discussing the applications that we intend to study in the con-
text of VIPEER. Essentially, the project includes components that operate on large
amounts of data (e.g. the prefetching component, that may include a recommender
engine) or that are required to perform several iterations over large inputs to com-
pute the near-optimal allocation of content – or fractions thereof – to be stored
in the distributed CDN (the dCDN). To this end, MapReduce, which we describe
below, constitutes a reasonable approach to address such setting. In what follows,
we will focus on our frist attempt at working with MapReduce in the context of
VIPEER.

MapReduce, popularized by Google with their work in [6] and by Hadoop [1],
is both a programming model and an execution framework. In MapReduce, a job
consists in three phases and accepts as input a dataset, appropriately partitioned
and stored in distributed file system. In the first phase, called Map, a user-defined
function is applied in parallel to input partitions to produce intermediate data stored
on the local file system of each machine of the cluster; intermediate data is sorted and
partitioned when written to disk. Next, during the Shuffle phase, intermediate data
is “routed” to the machines responsible for executing the last phase, called Reduce.
In this phase, intermediate data from multiple mappers is sorted and aggregated to
produce output data which is written back on the distributed file system. Note that
complex jobs may require several iterations or combinations of Map-Shuffle-Reduce
phases.

In this Section we gloss over several details of MapReduce and focus on the
key ingredients that define the performance of a job, in terms of execution time.
Simply stated, disk and network I/O are the main culprits of poor job performance.
The task of a job designer is then to optimize the amount of memory allocated to
mappers and reducers, so as to minimize disk access. Moreover, a job may include
an optional Combiner phase in which intermediate data is pre-aggregated before
it is sent to reducers, to minimize the amount of data to be transmitted over the
network. Job optimization is generally a manual process that requires the knowledge

9

2. Parallel Processing in VIPEER

of the size of intermediate data sent to each reducer, and the characteristics of the
cluster, including number of nodes, number of processors and cores and available
memory.

A key component of the MapReduce framework is the scheduler, which is the
subject of this work. The role of the scheduler in MapReduce is to allocate resources
to running tasks: Map and Reduce tasks are granted independent slots on each
machine. The number of Map and Reduce slots is a configurable parameter.

When a single job is submitted to the cluster, the default scheduler simply assigns
as many Map tasks as the number of machines in the cluster. Note that the total
number of Map tasks is equal to the number of partitions of input data: as such, the
scheduler may need to wait for a portion of Map tasks to finish before scheduling
subsequent mappers. Similarly, Reduce tasks are scheduled once all intermediate
data output from mappers is available: reducers may receive data from potentially
all mappers. Note that Hadoop implement an optimization called ”pipelining”: if
all reducers were to be scheduled once all mappers complete, the network would
suffer from a burst in data transmission and congestion may arise. Instead, with
pipelining, reducers are scheduled before mappers are done1 such that they can start
copying intermediate data as soon as some is available. However, the user-defined
Reduce function is only executed once all mappers are done.

When multiple jobs are submitted to the cluster, the scheduler decides how to al-
locate available task slots across jobs. The default scheduler in Hadoop implements
a FIFO policy: the whole cluster is dedicated to individual jobs in sequence; op-
tionally, it is possible to define priorities associated to jobs. Despite the well known
problems of FIFO scheduling, which starves short jobs that sit in a queue waiting
for a long job to finish, jobs can be optimized as if they were executing alone in the
cluster, which is a desirable feature.

2.2 Scheduling MapReduce Jobs

This Section is devoted to describe in detail our work on one of the main components
of a parallel processing framework in general and of MapReduce in particular. In the
VIPEER project, it is reasonable to believe that the parallel processing framework
will be used by several other components, especially those designed in WP4; the
following material is also relevant to WP2.

2.2.1 Introduction

The advent of large-scale data analytics, fostered by parallel processing frameworks
such as MapReduce [6] and Dryad [17], has created the need to organize and manage
the resources of clusters of computers that operate in a shared environment. Initially
designed for few and very specific batch processing jobs, data-intensive scalable com-
puting frameworks are nowadays used by many companies (e.g. Facebook, LinkedIn,
Google, Yahoo!, ...) for production, recurrent and even experimental data analysis

1Precisely, a configuration parameter indicates the fraction of mappers that are required to
finish before reducers are awarded a slot.

10

2.2. Scheduling MapReduce Jobs

jobs. Within the same company, many users share the same cluster because this
avoids redundancy (both in physical deployments and in data storage) and may
represent enormous cost savings.

In this work, we study the problem of resource scheduling, that is how to allocate
the (computational) resources of a cluster to a number of concurrent jobs submitted
by the users, and focus on the open-source implementation of MapReduce, namely
Hadoop [1]. Despite scheduling is a well known research domain, the distributed
nature of data-intensive scalable computing frameworks makes it particularly chal-
lenging. In addition to the default, first-in-first-out (FIFO) scheduler implemented
in Hadoop, recently, several solutions to the problem have been proposed to the
community [28, 5, 8, 18, 23, 25]: in general, existing approaches aim at two key
objectives, namely fairness and performance.

For example, [28] propose a scheduler that in principle is equivalent to processor
sharing; in addition, the authors note that data locality, which imposes computation
to be moved toward the data rather than vice-versa, plays an important role in the
efficiency of a particular job schedule. By simply waiting for a suitable resource to
be available, the “delay scheduler” [28] greatly reduces the amount of data that has
to be moved within the shared cluster. In another work [5], scheduling is cast as an
optimization problem: using an abstract system model, the authors focus on finding
an approximate solution to an on-line scheduling problem whose objective function
to minimize is the total time required to complete all jobs served by the system, while
fairness is not considered. The work presented in [8] considers a non-cooperative
scenario in which users may be inclined to “game” the scheduler in order to receive
more than their fair share of the cluster, and proposes a new, strategy-proof metric
to be enforced by the cluster scheduler.

Given the state-of-the-art, it is natural to question the need for another approach
to scheduling cluster resources. In this work we observe that fairness and perfor-
mance are non-conflicting goals, hence there is no reason to focus solely on one or
the other objectives. We proceed with the design of a scheduling protocol that can
be implemented in practice, and that caters both to a fair and efficient utilization
of a shared cluster.

First, in Sec. 2.2.2, we give an high level overview of our algorithm, and compare
it to traditional fair-sharing approaches. When the demand for cluster resources is
high, i.e., jobs necessitate all cluster machines, our scheduler “focuses” the resources
to an individual job, instead of partitioning the cluster to accommodate all jobs.
When the workload of a cluster is composed by heterogeneous jobs, in terms of
resource requirements, our scheme accommodates the possibility of running small
jobs in parallel, so that the cluster is fully utilized.

In Sec. 2.2.3, we delve into the implementation details of our scheduler. In
contrast to previous works, we pinpoint the key aspects of the MapReduce framework
that need to be considered when implementing a scheduling policy: as a result, we
show that locality constraints are important both for input data and for intermediate
results generated during the job execution flow. Furthermore, we show that our
approach to scheduling supports job optimization techniques that aim at minimizing
I/O operations. This is very important as MapReduce job designers usually spend
a non-negligible amount of time in optimizing their jobs: this effort can be nullified

11

2. Parallel Processing in VIPEER

by a scheduler that is oblivious to such optimization techniques.
Sec. 2.2.4 concludes this article with a series of further improvements that can

be applied to our scheme, and with our research agenda toward the implementation
and evaluation of our scheme.

2.2.2 The Scheduling Protocol

Scheduling in a distributed system like Hadoop represents a challenging problem:
theoretical results for such a complex environment are hard to derive. For this
reason, we adopt a top-down approach. We first consider the distributed system
as a single processing resource: according to the measurements in [28], jobs arrive
according to a Poisson process, while job size distribution is unknown. Therefore we
can look at the general results for the M/G/1 queueing system and select the most
promising scheduling policy. Such scheduling policy would be subsequently adapted
to the specific context of Hadoop.

2.2.2.1 Scheduling Disciplines

Scheduling has been a subject of many studies. Here we focus on the theoretical
results for scheduling policies in case of M/G/1 systems. We consider the mean
response time (i.e. the total time spent in the system, given by the waiting and
service time), and the fairness. While fairness is a complex subject, we consider the
notion of fairness as equal share of the resources2.

Among all the scheduling disciplines proposed in the literature (for a general
overview, see [11] and the references therein), we consider only two policies that are
relevant to our case: a policy that minimizes the mean response time and one that
provides perfect fairness.

In the system we consider, the job size is known a priori : in this case the optimal
preemptive scheduling policy that minimize the mean response time is the Shortest
Remaining Processing Time (SRPT), where the job in service is the one with the
smallest remaining processing time. Since the focus is on the mean response time,
the fairness is not guaranteed, i.e., long jobs may starve. SRPT represents an
interesting solution, since recent measurements [28] have shown that the job size
distribution in MapReduce clusters belongs to the category for which SRPT may
provide fairness; nevertheless, it is also true that there are many short periodic jobs
– a case where SRPT may perform poorly [7].

If we consider only the fairness, Processor Sharing (PS) represents the policy
that guarantees a fair share of the resources. In PS, if there are N jobs in the
system, each job receives a 1/Nth fraction of the server resources. Unfortunately,
the mean response time is higher (especially for high loads) than SRPT.

Given the two objectives, good performance (in terms of mean response time)
and fairness, is it possible to obtain both with a scheduling policy? The solution of
this problem is represented by the Fair Sojourn Protocol (FSP) [7], described in the
following section.

2Alternatively, the fairness can be defined through the total time spent in the system normalized
to the job size, which should be proportional to 1/1− ρ, where ρ is the server utilization.

12

2.2. Scheduling MapReduce Jobs

2.2.2.2 How Fair Sojourn Protocol Works

The main idea of FSP is to run jobs in series rather than in parallel. In practice,
assuming a PS policy, where each job has its fair share, it is possible to compute the
completion time. The order at which jobs complete in PS is used as a reference to
schedule jobs in series. In the basic single server configuration, this means that at
most one job is served at a time, and the job can be preempted by a newly arrived
job.

In order to show how FSP works, we make an example. Assume that there are
three jobs, j1, j2 and j3, which require 100% of the cluster. The jobs arrive at time
t1 = 0s, t2 = 10s and t3 = 15s respectively, and it takes 30 seconds to process job
j1, 10 seconds to process job j2 and 10 seconds to process job j3. For simplicity,
assume that the processing time is independent from the location of the tasks, i.e.,
even it some tasks need to be moved within the cluster, the processing time remains
the same.

100
usage (%)

cluster

50

10 15 37.5 42.5 50

time
(s)

100
usage (%)

cluster

10 5020 30

50

time
(s)

job 1

job 2

job 3

job 1 job 3job 2 job 1

Figure 2.1: Comparison between PS (top) and FSP (bottom).

Figure 2.1 (top) represents the cluster usage over time in case of PS: when job
j2 arrives, the cluster is shared between j1 and j2, and, when job j3 arrives, the
cluster is shared among the three jobs. The job completion order is j2, j3 and j1.
The bottom part of the figure shows the FSP approach. When job j2 arrives, since
it would finish before job j1 in case of PS, it preempts job j1. When job j3 arrives,
it does not preempt job j2, since it would finish after it in case of PS; when job j2
finishes, job j3 is scheduled since it would finish before job j1 in case of PS.

The FSP scheme is able to assure that each job receives the fair amount of
resources as in the PS scheduling. At the same time, the scheme is able to decrease
the mean job completion time. In particular, long jobs tends to have the same
completion time as in PS, while short jobs finish before.

13

2. Parallel Processing in VIPEER

While the formulation of FSP is simple in case of single server, when we take into
accounts a cluster of servers, we should adapt the scheme to this specific context.
In particular, it may happen that a job is composed by few tasks, and it is sufficient
to use a portion of the cluster to process such job at the maximum possible speed.
We illustrate this situation in the following example. Assume that jobs j1, j2 and
j3 require 100%, 55% and 35% of the cluster respectively. The arrival times are
t1 = 0s, t2 = 10s and t3 = 13s and the processing time (if the required percentage is
given) is 30 seconds for job j1, 10 seconds for job j2 and 10 seconds for job j3.

10 13 3923.5

usage (%)
cluster

100

50

24.5

time
(s)

10 13 20 23 39

100

50

usage (%)
cluster

time
(s)

job 1

job 2

job 3

job 1

job 2

job 3

Figure 2.2: Comparison between PS (top) and FSP (bottom), with jobs that do not
require the full cluster.

Figure 2.2 compares the processing in case of PS (top) and FSP (bottom) ap-
proach. With FSP, job j2 would preempt job j1; since j2 requires only 55% of the
cluster, the remaining 45% can still be used by j1. When job j3 arrives, it would
preempt job j1 (but not job j2), but it is sufficient to allocate 35% of the cluster
to serve it, leaving 10% of the cluster to job j1. Even in this case, FSP is able to
decrease the mean job completion time, yet maintaining the fair allocation of the
resources. Note that the final order of job completion with FSP is different from
the PS case (j2, j3 and j1 instead of j3, j2 and j1): in this case job j2 finishes before
the corresponding completion time in case of PS, therefore the fair allocation of the
resources is not compromised.

Having described with some examples the general behavior of the scheme, we
provide the basic algorithm for task allocation implemented in the scheduler. As
observed in [28], when the scheduler needs a resource, it can either kill some existing
running tasks or wait for task completion. Since killing task would be a waste of
resources, it is preferable to wait for available task slots: thanks to the high rate at
which task finish, this does not represent a major problem. In our specific case, if a

14

2.2. Scheduling MapReduce Jobs

newly submitted job preempts the existing one (or ones), we simply let the current
running task complete and launch the new job as task slots become available.

The general scheme is therefore composed by two parts which perform different
actions for the two possible events: (i) job submission or completion, and (ii) task
completion (see Algorithm1).

Algorithm 1 Basic Task Allocation
1. while a job is submitted / finishes do
2. for all jobs do

3. compute the fair share
4. compute the finish time
5. end for

6. sort jobs according to their finish time
7. end while

8.
9. while a task slot is available on machine M do

10. for j in jobs do

11. if j has an unlaunched task t then
12. launch t on M
13. return

14. end if

15. end for

16. end while

When a job is submitted or finishes, the algorithm computes the fair share for
each job and updates the finish times. These values are used to order the jobs,
i.e. priority is given according to the completion time. When a task slot becomes
available, the scheduler considers the ordered list of current jobs and assigns the
task to the higher priority job that has at least one unlaunched task – a job may
still be running, but all its tasks (e.g., all the Reduce tasks) may have been already
allocated.

The proposed basic scheme does not take into account different aspects, e.g.,
task locality or user fair share (as opposed to job fair share) which are discussed in
the next section.

2.2.2.3 Improving basic FSP scheme

The scheme summarized in Algorithm1 is divided into two parts: job sorting and
task assignment. These two building blocks can be modified independently, since
they solve different problems.

The job ordering can be done taking into account multiple aspects: for instance,
we may assume that jobs belong to different classes, and each class has different
shares of the cluster. In this case the job completion times are computed considering
the Generalized Processor Sharing (GPS), where every job i has a weight φi and it
receives a share φi/

∑

j φj (the sum over j is done considering the current jobs) of
the resources. Another modification may take into account users rather than jobs,
i.e., jobs submitted by the same user are served with FIFO, and the resources are
shared among users.

15

2. Parallel Processing in VIPEER

The task assignment mainly tries to solve problems related to locality. Given
the ordering of the jobs, the task assignment may skip some jobs if the locality
requirement is not met. The implementation of this approach can be borrowed
directly from the Delay Scheduler [28].

As a final remark, we should mention that FSP needs to estimate the job finish
time. While, as a first approximation, we may consider the job size, we will evalu-
ate more detailed mechanisms (that take into account, for instance, the difference
between CPU-intensive and memory-intensive jobs) as future work.

2.2.3 Implementation details

In Sec. 2.2.2 we assume a simplified version of the MapReduce framework to outline
the key ideas behind FSP: for instance, we do not differentiate between Map and
Reduce tasks. We now drop such assumptions and delve into the implementation
details of FSP.

2.2.3.1 Preempting jobs

The solution we propose is based on job preemption. How such preemption should
be managed? In order to understand this aspect, let’s focus on a detailed example,
shown in Fig. 2.3, where we consider two jobs, j1 and j2: j1 operates on a dataset
split in 10 blocks, involving 10 Map tasks and 3 Reduce tasks; j2 is smaller, and
consists in 4 blocks, 4 Map tasks and 4 Reduce tasks. In the example we consider
a cluster of 4 machines, with 1 Map and 1 Reduce slot each. Fig. 2.1 illustrates,
on a time-line, the task allocation per machine, per slot and per task, with salient
points annotated on the time-line.

Note that the ingredients of this example are similar in spirit to that of Fig. 2.1
(although with two jobs instead of three). Both jobs require all cluster resources (at
least in the Map phases) since input blocks are located on all the cluster machines:
as such, j2 preempts j1.

3

map(1,1)

map(1,2)

map(1,3)

map(1,4)

M1
reduce(1,1)

reduce(1,2)

reduce(1,3)

map(2,2)

map(2,3)

map(2,4)

M2

M3

M4

map(2,1)

reduce(2,1)

reduce(2,3)

reduce(2,4)

map(1,5)

map(1,6)

map(1,7)

map(1,8)

reduce(1,1)

reduce(1,2)

reduce(1,3)

map(1,9)

 map(1,10)

j1 arrives j2 arrives Preemption Suspend j2 finishes j1 finishesResume

reduce(2,2)

Figure 2.3: A detailed scheduling example with FSP.

3A close look at Fig. 2.3 reveals that job “serialization” is not as sharp as illustrated in Fig. 2.1.

16

2.2. Scheduling MapReduce Jobs

In Fig. 2.3, map(i, j) indicates Map task number j of job i; similarly reduce(i, j)
indicates a Reduce task number j of job i. First, j1 arrives and occupies the whole
cluster: the first 4 Map tasks of j1 are scheduled. After some time, j2 arrives: based
on Algorithm 1, j2 preempts j1. Preemption of Map tasks is not immediate: the
FSP scheduler waits for mappers from j1 to finish to schedule mappers from j2.

It is now important to note how FSP handles Reduce task scheduling: as soon
as4 Map tasks from j1 finish, Reduce tasks from the same job are scheduled on
the available slots: in the figure, the three Reduce tasks from j1 are scheduled on
machines M1,M3,M4.

Now, when mappers from j2 are done5, FSP schedules the reducers. To do so,
two options are available: Reduce tasks from j1 can be killed or, as we suggest,
suspended. Killing Reduce tasks, as implemented in [28], is convenient because the
scheduler is simplified: reducers are simply tagged as not completed and will be
scheduled subsequently. However, this simplification comes at a price: all work
done by the reducers, including disk and network I/O is wasted.

Since I/O is the major factor that determines the job execution time, we instead
suggest to suspend reducers and save their state to disk. Reduce task suspension
can be implemented as follows: the scheduler can force the TaskTracker in charge of
a reducer to spill data to disk; once this is done, the scheduler pushes the suspended
reducers in the queue of pending Reduce tasks. One key observation is necessary:
as intermediate (and sorted) data is materialized on disk, suspended Reduce tasks
must be resumed on the same machines they were suspended on. In practice, data
locality applies to both Map and Reduce tasks. We show this in Fig. 2.3: once
mappers of j2 are done, reducers for j2 are scheduled, while reducers from j1 are
suspended. In the meanwhile, new Map tasks from j1 are scheduled on available
Map slots. When reducers from j2 complete (and j2 finishes), the reducers from j1
can be resumed: however, note that although machine M2 has an available Reduce
slot, this cannot be used by any of the suspended reducers from j1, due to data
locality. When the Reduce slot on machine M3 becomes available, the Reduce task
for j1 can be resumed. Fig. 2.3 illustrates (through an example) also the effect of
data locality on mappers: the 9-th mapper from j1 is not scheduled on machine M1

as it becomes available, but it is delayed to wait for machine M2, which is hosting
an un-processed block of data.

2.2.3.2 Optimized jobs

MapReduce job optimization consists in tuning the parameters of the framework,
and in using combiners, so as to minimize I/O. Simply stated, given the charac-
teristics of the machines of the MapReduce cluster, an optimized job rarely writes
on (the local) disk, reduces the amount of intermediate data to be shuffled, and
performs sorting operations in memory. As such, each job must be properly tuned
in order to use at best the resources available to a machine.

4The default behavior in Hadoop is that reducers are launched when 5% of the mappers
have completed. As such, reducers can initiate intermediate data transfers; however, the Reduce
function is only executed once all mappers from a job have completed.

5Precisely, when one mapper is finished

17

2. Parallel Processing in VIPEER

With the default scheduler, namely a FIFO approach, jobs are serialized and can
thus fully exploit the resources of each machine. Alternative scheduling approaches
appeared in the literature, instead, tend to parallelize as much as possible jobs, so
as to achieve a fair sharing of cluster resources. This has the negative impact of
hindering job optimization because it is impossible to predict the number (and the
nature) of concurrent jobs scheduled on each machine. As such, from the practical
perspective, a scheduling approach that achieves fairness while granting the job
designer with the possibility of tuning each job, is a desirable property.

Our approach to scheduling achieves exactly what discussed above: when jobs
require all cluster resources, they have access to the full capabilities of each machine
they are scheduled on, in contrast to having the “illusion” of running alone in the
cluster. When jobs are small, they share the cluster and can be processed in parallel,
as shown in Fig. 2.2.

2.2.4 Conclusions and Future Work

In this work we presented the design of a new scheduling algorithm for a shared
cluster dedicated to MapReduce jobs. In contrast to previous works, that abstract
away parts of or the whole system, we pinpoint the impact of scheduling on the
inner components and phases of MapReduce jobs, paying attention to current best
practices in job optimization. Such an approach allowed us to extend the concept of
data locality and apply it to the Reduce phase, which is a desirable feature especially
when reducers can be suspended instead of being simply killed, as done in previous
works.

The scheduling algorithm presented in this article, labelled FSP, achieves two
objectives that have only been considered separately in the literature: fairness in
resource allocation and job performance. Currently, we focus on the implementation
of FSP: inspired by the work in [28], we plan to issue a JIRA and contribute to the
Hadoop community with a “contrib” FSP module. Subsequently, we will proceed
with a thorough experimental evaluation of FSP and compare its behavior with other
available schedulers, for a variety of job types (short and long) and composition
(number of mappers and reducers).

18

3 Prefetching

The Vipeer project proposes an evolutionary and pragmatic method to efficiently
deploy a novel video distribution architecture. This architecture is based on the
collaboration between service providers —or traditional CDNs— and peer-assisted
CDNs —or distributed CDNs, called dCDNs— operated by ISPs.

This architecture leads to a neat delineation between the role of a CDN and that
of a dCDN. A CDN is in charge of disseminating content at a wide scale (say, at
the international level) while a dCDN aims at delivering content within a medium
size network (say, regional, typically an ISP’s network). In such architecture, the
network operator engineers the video traffic delivered to its customers.

3.1 Introduction

The main idea of Vipeer dCDNs is to decrease the load of the origin content server
by serving clients from ISP managed caches that have been strategically placed close
to the clients. The peers in the peer-assisted dCDN may be network elements such
as network nodes or boxes located at customers premises.

The delivery system consists of a set of content caches which deliver content
replicas to end-users. Among others, managing the dCDN comes with the manage-
ment of the caches. The placement of the video content replicas among the different
peers is described in Chapter 4.

The question here is which video content replicate among the peers so that the
downloading process keeps been managed by the dCDNs (and not the traditional
CDN). In order to choose the content, define the number of replicas of each content,
and organize their placement close to the end-users, we design a Prediction and
Recommendation (P&R) system.

When end-users start downloading their videos, their requests are registered and
delivered to the P&R module. The aim is to analyze the collected downloading
behavior and generate for each user k potential downloads during the next period
of time. The dCDN prefetches one copy of the predicted pieces of content from
the CDN, if necessary. The dCDN then optimizes the number of replicas and their
placement according to the predicted behavior.

This chapter describes a MapReduce-based P&R system. We will mainly show
here that it is actually relevant to use such a prediction system in Vipeer. The
Recommendation engine is trained with a real VoD dataset provided by our ISP
partner.

19

3. Prefetching

3.2 Related work in the VoD distribution context

P2P file downloading and streaming architectures dramatically reduce the server
loading and provide scalable content distribution (cf. state of the art, Vipeer deliv-
erable D4.1). When a file is downloaded by many users, systems like BitTorrent or
Emule allow users to help each others: their storage unit maintains a replica which
is distributed to others. Each peer stores a small amount of storage compared to
CDNs. In this context, users manage their own cache which contribute to the whole
set of caches. Popular content delivery or crowd behaviors are then intrinsically
managed by the users themselves. But for unpopular content, it may be difficult to
find any peer able to deliver it: users may be disconnected, only few replicas —if
any— are available.

P2P is also used to distribute live streaming content (IPTV for example). Since
the size of such a cache on each peer is limited, it is imperative that an appropriate
cache replacement algorithm is designed. In this context again, the content to be
delivered is related to a program schedule and is then similar to mass phenomena.
Passive caching such as LRU or LFU is here effecient.

According to [15], P2P-VoD “is a new challenge for the P2P technology. Unlike
streaming live content, P2P-VoD has less synchrony in the users sharing video con-
tent, therefore it is much more difficult to alleviate the server loading and at the
same time maintaining the streaming performance.” They monitored a real system
deployed by PPLive in 2007, and performed various performance measures. In 2008,
this PPLive P2P-VoD was already supporting more than 150K simultaneous users.
The system passively managed the caches with a LRU-like policy. They did not
perform any prefetching. Without any prefetching, only the VoD already down-
loaded within the system are stored in the caches. While prefetching may improve
performance, and reduce server load, it may also unnecessarily waste precious peer
uplink bandwidth. PPLive P2P-VoD did not choose to actively prefetch, especially
when the system is deployed on ADSL peers with low uplink capacities.

[15] brings also a framework to study and measure different design choices from
file segmentation strategy to content discovery and transmission. A real deployed
system is analyzed, which is intrinsically interesting. They provide clues to under-
stand the users behavior, metrics to measure their satisfaction in terms of network
fluency, or metrics to quantify the content replication strategy. But unfortunately,
the replication strategy is not compared to others, and the choice of no-prefetching
is not discussed.

Wu and Li [26] provide a theoretical analysis of passive peer caching (used in
real world such as PPLive) and demonstrate an optimal cache replacement policy.
They compare it with different cache replacement algorithms (LRU, LFU). They
argue from extensive simulations than in most cases, the simplest cache replace-
ment policies are actually effective enough. Their optimal strategy decreases only
marginally the average server load. In their study, they do not consider the use of
active prefetching. They do not either describe in which cases the server load is not
reduced. But they highlight the lack of robustness of passive policies against the
churn. Yet it would be interesting to confront these two issues on the utility of the
prefetching. In particular, for non- very popular content not enough replicated by

20

3.3. Scientific and technological challenges

the logic of the LFU or the LRU.
Prefetching may be employed to optimize the content searching step. [13] aggre-

gates seeking statistics and proposes an optimal prefetching scheme and an optimal
cache management to minimize the seeking delay to find a position in a VoD con-
tent. They propose a seeking guidance. The guidance is obtained from collective
seeking statistics of other peers who have watched the same title in the previous
and/or concurrent sessions. From the collected seeking statistics, they estimate the
segment access probability. They show the efficiency of the guidance, but also that it
is very challenging to aggregate the statistics efficiently, timely and in a completely
distributed way.

VOVO [12] models users’ behavior at the peer level. Each peer collects its
logs and propagates to its neighbors (gossip). Each peer predicts its own future
downloads using on-line association rule mining. The tracker may be used to store
large volume of user logs. Reinforcement learning techniques are used to maintain
a model of user behavior. Each peer receives the learnt model as a bootstrap and
then uses it to prefetch contents. Hybrid prefetching is then performed. A classic
LRU policy is used to cache the lastest 5 minutes of video played. In parallel extra
cache is used to prefetch related pieces of content based on the user’s bahavior.

As a matter of fact, predictive prefetching reflects the whole group of users.
There is no personalization. APEX [27] presents a personalization framework able
to discover each user’s preference. We may have this kind of issue if we detect that
the popularity ranking of VoD depends on the users geographic area.

3.3 Scientific and technological challenges

In Vipeer, the peers are managed by the ISP, not by the users themselves (as in
Emule for example). The problem is to anticipate future downloads so that the
maximum of the VoD can be searched, retrieved and viewed in acceptable conditions
for the end-users: small start-up latency, sustainable playback rate, etc. State of
the art shows that popular content is effectively cached. We aim in this project, to
improve the less popular content management.

• how to choose the content to be prefetched in order to provide a large coverage
of content —not only popular ones— and then minimize the requests that go
out of the ISP domain?

• how to distinguish profiles of users? Prefetching may not reflect the whole
set of users, but may be adapted to communities of users? Or regional areas
with specific behavior? How to take into account community/geographic zones
preferences?

As mentionned in the previous section, we still have the issue of small but nu-
merous caches, with limited bandwidth and storage capacities. The challenges are:
which content to cache and where? The placement problem will be addressed in
the Chapter 4. It will be seen as the optimal allocation as a k-product capacitated
facility location problem.

21

3. Prefetching

3.4 Recommender systems

In order to prefetch content, we propose a recommender engine. The recommen-
dation customizes the access to information for a given user, and thus facilitates
the choice of content in a catalog too large for her/him to get an overall idea. In
practice, recommendation systems, from knowledge about a user, filter a set of con-
tent and produce a list, often ordered, with these few selected content and deemed
appropriate for her/him.

The research focuses on designing algorithms for selecting content for a given
user with a known profile of tastes and/or purchases. The prime example is the
e-commerce site Amazon1 that directs the visitor to the content that other visitors
have appreciated. Recommendation methods are used on other e-commerce web-
sites (Fnac2, Virgin3, etc.), on music platforms (Lastfm4, Pandora5, etc.) or VoD
merchant such as Netflix6.

[22] reveals two main categories: techniques based on collaborative filtering which
compute similarities between user profiles based on ratings (a number of stars, the
list of past purchases) or similarities of profiles on the basis of content descriptors.
The second family of techniques is based on content filtering, and it searches a
thematic fit between user profiles and content profiles. [4] compares these different
methods with different similarity measures and different assessment methods on two
sets of reference data, including a very modern, the Netflix challenge dataset7.

The state of the art of recommender systems algorithms lists quantity of calcula-
tion of similarity, with possibly the combination of techniques. The Netflix contest
has offered a motivating challenge to researchers who rapidly improved the state of
the art. Researchers like [14] wonder wether the quality gain of recommendation are
now visible to the users: there is indeed a kind of “magic barrier” that prevents the
system to achieve perfection as the ratings by users themselves are inconsistent or
even contradictory.

Yet there are still scientific obstacles in the field, including the recommendation
of not popular content, also called content in the Long Tail.

[3] compares different collaborative filtering algorithms and reports the weakness
of many of them when considering sparse data. The sparsity of ratings leads to un-
relevant similarities between users (or items). In our case, we address non popular
content, i.e. VoD for which the “light” history of downloads does not allow confi-
dent recommendation. Each user downloads only a few VoD, and only few users
download non-popular VoD, so most of the cells of the user-VoD matrix are empty.
They also show that SVD-based techniques (involving matrix factorization) are the

1http://www.amazon.com
2http://www.fnac.com
3http://www.virgin.com
4http://www.lastfm.com
5http://www.pandora.com
6http://www.netflix.com
7Competition launched by Netflix, Inc.. an algorithm to find recommendations for films surpass

theirs significantly: gain of more than 10 % in the relevance of the predicted scores (RMSE measure)
on the test set provided. Netflix has rewarded the winners of a premium of one million dollars in
2009.

22

3.5. MapReduce Recommendation

most efficient of the collaborative filtering techniques. They also propose their own
method addressing large volume of data.

[21] demonstrate that it is difficult to predict a score for the Long Tail: using
9 different learning methods, they show that the prediction error grows for content
for which there is only few notations. To overcome this problem, they propose a
method to combine the content of the Long Tail into groups of similar content and
then applying predictive methods for groups of items and not on each one. They
combine the low ratings in an exploitable critical mass of notations. They also
suggest ways to detect the boundary between the head and tail of the distribution,
as well as to discover the number of clusters of rare items. These two parameters
are difficult to choose, vary from one data set to another and affect the outcome
significantly.

We have also explored a Social Network Analysis-based method [2] which im-
proves the recall of predictions. The social network links help in computing similar-
ities between users, and thus allow a better capture of users profiles. The method
actually increases the portion of good items retrieved (by improving the recall, we
miss less good results). The accuracy of the recommendations (precision) remains
low, but at a level comparable to the other tested techniques on our dataset (less
than 0.50 % of recommendations are among the movies annotated users, the main
portion of prediction are unexpected results). Unfortunately, we will see that our
Vipeer dataset is poor and does not allow such an approach.

We are still conducting experimentations with different techniques, and we de-
scribe here only the first and common collaborative filtering approach in order to
justify the use of recommendation techniques in the Vipeer project.

3.5 MapReduce Recommendation

We test here the well-kown collaborative filtering approach. We used the concept
of item-based recommender engine. The principle is simple: initially we determine
the similarities between items based on usage data from users. Then in a second
step, from the items already “preferred” by each user, we recommend k−items
corresponding to her/his tastes.

There is another model called user-based recommender engine which takes things
the other way, by calculating the similarities between users to recommend items. We
turned to the item-based recommenders for two reasons: one being that in general,
new items are added to the system less often than users. The similarities between
items should not be calculated frequently (when the catalog is updated). The second
reason is that it is more robust against the sparsity of the user-item matrix [24, 16, 3].

3.5.1 VoD downloads dataset

Our ISP partner provides us an extraction of the VoD downloading history from a
regional zone. The commercial VoD service is legal and comes with the ISP offering.

For each download, the logs give the timestamp, the user ID and the film ID.
8,935 customers downloaded 108,108 VoD during 6 weeks (February-March 2010).

23

3. Prefetching

5,777 different movies were requested. Our previous deliverable D4.2 provides a
detailed description of the downloaders profiles.

Orange Orange > 20 MovieLens
Items 5745 4812 1682
Users 8903 1200 943
Ratings 84905 41961 1000000
Density 0.1% 0.72% 6.3%

Table 3.1: User-Item matrix, comparison with the well-known MovieLens dataset.

The MovieLens dataset8 contains real data corresponding to movie ratings. As
this dataset is well-known in recommendation, we may compare our results with
this dataset. Users with less than 20 ratings have been removed, but the User-Item
matrix is still sparse with a low density (Table 3.1). Our own dataset is more sparse,
with or without the occasional users (the ones with less than 20 downloads).

Figure 3.1: Great diversity of Orange VoD popularity: distribution of VoDs regard-
ing the number of downloads. The 3 most popular VoDs were downloaded more
than 700 times (in 1 month).

When we compare the popularity of VoDs between our original dataset and the
one without the occasional users (Figures 3.1 and 3.2), we observe that occasional
users contribute to very popular VoDs. We will show later that occasional users

8http://www.grouplens.org/node/73#attachments

24

3.5. MapReduce Recommendation

Figure 3.2: Distribution of VoDs regarding the number of downloads, when occa-
sional users are removed (Orange > 20). The 3 most popular VoDs were downloaded
more than 77 times in 1 month.

bring noise in the data and lead to irrelevance. Removing those users does not
remove any VoD in the logs, and we keep the relative popularity between the films.
Our aim is to build a similarity matrix of items, the more relevant, the better.

3.5.2 Apache Mahout boolean recommender

The Apache Mahout machine learning library’s goal is to build scalable machine
learning libraries. The core algorithms for clustering, classification and batch based
collaborative filtering are implemented on top of Apache Hadoop using the MapRe-
duce paradigm. The platform9 supports recommendation mining tools. Written in
Java, it provides a solid base although it is still under development. Recommender
Systems comes from the part of Taste project, now included in Mahout. It can be
deployed both on simple and distributed Hadoop-based architectures.

The Vipeer project is intended to cover the entire traffic of VoD distribution from
an ISP. Thus the use of MapReduce is required if we need results fast. However,
given our available sample dataset —the number of user-item associations do not
approach 100 million— it is not necessary to study the distributed algorithm for this
first experimentation. We use here the ItemBasedRecommender classes10 from the

9http://mahout.apache.org/
10https://cwiki.apache.org/confluence/display/MAHOUT/Itembased+Collaborative+

Filtering

25

3. Prefetching

//Data Model creation, here a log file

DataModel model = new FileDataModel(new File(filePath));

//Item-Item matrix comutation using Tanimoto Coefficient

ItemSimilarity similarity =

new TanimotoCoefficientSimilarity(model);

//Creation of the boolean preference item based recommender

ItemBasedRecommender recommender =

new GenericBooleanPrefItemBasedRecommender(model, similarity);

//Generation of k recommendations for a user

List<RecommendedItem> recommendedItems =

recommender.recommend(userID, k);

Figure 3.3: Mahout java code to create and activate a boolean recommender.

Mahout version 0.6-SNAPSHOT (downloaded mid 2011). As shown in an exemple
of Java code, Figure 3.3, Mahout recommender is ready to use.

Our dataset does not include any ratings nor additional information about down-
loaded movies. Thus we only have a binary data: the user has downloaded the
Orange VoD or not. Each line of the available file is a download, with the following
fields: userID, itemID (the movie), timestamp (date of download).

For binary data, the choice is not well off in terms of algorithms [10]. It is recom-
mended to calculate the similarities between items with the coefficient of Tanimoto
(Jaccard coefficient, cf. equation 3.1):

sij =
|Ui ∩ Uj|

|Ui ∪ Uj|
(3.1)

with Ui the set of users who have downloaded the V oDi.

Note that it may be interesting, in addition, to consider another matrix of sim-
ilarities calculated from the movies’ metadata, which may improve the accuracy of
recommendations. The metadata may be the type of the movie, the actors, the film
maker, etc. In the present case, this is impossible since we have no information on
the films, not even the title.

rui =
∑

j∈Iu

sij
|Iu|

(3.2)

with Ui the set of users who have downloaded the VoD i.

The recommended items are sorted according to the predicted rating (equation
3.2). The “recommender” outputs the k best items for each user with knowledge of
the similarities between items sij and the list of items Iu previously downloaded by
the user u.

26

3.6. Evaluation

3.6 Evaluation

MAE and RMSE metrics are excluded in the boolean case (these two types of
measures need a rating. MAE is the absolute mean deviation between the predicted
rating and the real rating, see the equation 3.3). [14] provides an exhaustive list of
metrics.

MAE =

∑N

i=1 |predictedi − reali|

N
(3.3)

precision =
|predicted ∩ real|

|predicted|
=

TP

TP + FP
(3.4)

recall =
|predicted ∩ real|

|real|
=

TP

TP + FN
(3.5)

with TP the number of true positive (correct result), FP the number of false positive
(unexpected result) and FN the number of false negative (missing result).

We use here the precision (equation 3.4) and recall (equation 3.5) measures.
The precision measures the part of true positive predicted items among all the
predictions. The recall measures the ability of the system to predict all of the
relevant items (true positive added to false negative items). Thise measures are
really relevant in our context. With a bad precision, the risk to prefetch items
which will not be downloaded is high. We may here select only the very confident
predictions. A bad recall means that there exist content that are not (can not
be?) predicted by the method. Only “mean” behavior is really captured, this is a
well-know weakness of collaborative filtering methods.

Note that we are more in a context of prediction than a context of recommenda-
tion. [14] suggests that the recommendation of novelty and surprise is expected by
the user. Such “non-obvious” recommendations are appreciated, even so these items
would never have been in the dataset (the item would not have been discovered by
the user without any recommendation). In this case, non optimal precision and
recall may not be a problem. A contrario, in our prefetching context, with limited
storage space, a bad precision is a critical point. We aim to predict only true positive
items, or been more realistic, reduce the false positive ones. We aim also a good
recall, so that the caches provides the highest part of future downloadings and keep
the traffic within the ISP network.

The class “GenericRecommenderIRStatsEvaluator” from Mahout includes eval-
uation of boolean recommendation systems. Unfortunately, at the time we have
tested it, it was not functional. We have developed our own classes with different
strategies, described in the next section.

3.6.1 Realistic chronological scenario

The dataset is sorted by downloading date, it is then splitted into a training dataset
(typically 80% of all the data) and a testing dataset (20%). The predicted items
calculated for every user from the training dataset are compared to the real items
downloaded.

27

3. Prefetching

This model is realistic because, at time t, the Vipeer P&R component recom-
mends items based on the data then available. The recommendations are checked
with the downloads actually made beyond that date t.

However, this algorithm cannot in our current situation provide convincing and
reliable results: in fact, by selecting the test set, we must consider in the training
set only the few users who belong to both sets. Not forgetting the fact that we
eliminate also the users who have downloaded less than 2 ∗ k VoD in the training
set (practical rule to keep “valuable” users).

This algorithm is therefore limited for our current Orange dataset, where only
some of the users appear in the test set. But we keep in mind that it will be relevant
to evaluate this way the Vipeer prefetching component under realistic conditions.

3.6.2 Netflix scenario: fixed k recommendations, testing with the K latest

downloads

Lots of research on recommendation systems simply do not take into account the
chronology when splitting the dataset. It was the case during the Netflix challenge.
Small dataset are evaluated more easily this way since we keep more users under
consideration.

For each user, we extract the K latest (dated) VoDs from the downloading log.
We recommend k items for each users. This algorithm leads to a precision of about
0.11, which is reasonable. 11% of the predictions are real future downloads. This is
a good score for a recommendation system. We will discuss later on this chapter if
the approach is suitable as a prefetching method.

To measure the impact of keeping occasional users in the dataset, we tested
different values of the filtering threshold (note that this threshold must be greater
than K). The F1 score (equation 3.6) measures the compromise between precision
and recall. F1 score reaches its best value at 1 and worst score at 0.

F1 = 2
precision.recall

precision+ recall
(3.6)

We see on these the graph Figure 3.4 that the F1 score varies only a little with
the power of filtering. However, this teaches us that it is risky to keep occasional
users and also dangerous to remove too many users (high filtering threshold). In
our case, a value of 6 or 8 could be interesting —and not 20 as it was filtered in
MovieLens. Again, this is the result of a single dataset, this kind of calibration must
be performed with any new kind of dataset.

3.6.3 Adaptative scenario: variable k above a threshold, testing with the K
latest downloads

A peculiarity of the first two scenarios was that the number of recommended films
was constant: k for each user. The idea for the third method is to keep the princi-
ples of selection of training and test dataset of the second senario, while offering a
dynamic number of recommendations.

28

3.7. Is recommendation relevant for Vipeer?

Figure 3.4: The removal of occasional users and its impact on the F1 score. The X
axis is the minimum number of downloadings below which a user is occasional.

For each user, at leastMinRecNum items are recommended, maximumMaxRecNum,
and the score of the items selected must be greater than V alidRecThreshold. For
example, with a minimum of 3 to a maximum of 10 and a threshold of 1.0 (the best
possible rating), we obtain a precision of 0.15, which becomes acceptable. A series
of tests by varying these three parameters will of course be performed, especially
with a more relevant dataset (Orange logs during one year).

This algorithm is interesting since it is adapted to the project: as the ultimate
objective is to build a list of VoDs for the caches, we are not interested in the
items whose recommendation score is too weak (below V alidRecThreshold). It is
therefore logical to include this selection in the evaluation.

3.7 Is recommendation relevant for Vipeer?

After describing the data available, the recommendation system and evaluation
methods of the recommendations, it is time to return to the heart of the Vipeer
project and evaluate the real contribution of the recommendations, by comparing
the two types of caching policies:

• The Popularity cache, which is simply constituted of the most popular films
(type of LFU method),

• The P&R cache, from the recommendation engine.

29

3. Prefetching

Several methods exist to create a list of the best recommendations. The one
we selected is based simply on an array of recommendations made with a dynamic
number of recommendations per user, as established in the previous section. We
then select the VoDs that appear most in this table. Another possibility would be
to modulate this ranking with the scores given by the recommendation algorithm.

We developped the class V ipeerBooleanRecommenderEvaluator, based on the
third evaluation algorithm, described in the section 3.6.3 with the suggested pa-
rameters. This class fills the two types of cache, and then produces statistics by
counting the number of real downloads that have been satisfied from the caches, as
if they had been deployed into the peers. The Table 3.2 shows the results for two
global sizes of cache: 200 or 1000 VoD spread among the peers.

Downloads
Caches capacity 200 items Caches capacity 1000 items

nb true
positive

% true
positive

nb true
positive

% true
positive

Popularity 10258 34.2 20750 69.1

P&R 8639 29 16192 53.9

Both 6468 21 14537 48.45

Table 3.2: The number (and %) of downloads served by each types of caches. Some
of the downloads may be served by both methods.

These results teach us several things. First, we show that with a cache of 1000
movies (1/5 of the whole!), the Popularity cache covers 70% of the downloads, which
is very good because this method is easy to implement.

On the other hand, the P&R cache is globally less effective than the Popularity
cache. It misses 20% of the downloads that the Popularity approach catches (12%
for a cache size of 200). But what is interesting is that it can cover the downloading
of movies that are actually downloaded regularly but which do not appear in the
most popular films: 5% of the downloads that were not refering to the top-1000
most popular VoD were predicted by the P&R component (7% with the top-200).
It is precisely this aspect we are looking for: P&R prefetching is actually com-
plementary to LFU-like caching, especially with global low storage capacity. The
recommendation system can potentially improve the performance of the final cache.

An additional step is needed: we have to determine the rank of popularity above
which LFU is efficient, and the rank below which the items are mostly recommended
by the P&R component.

3.8 Conclusion

In Vipeer WP4, we study an alternative approach to not cache exclusively the most
downloaded movies. We aim to provide a large coverage of content, not only popular
ones, and then minimize the requests that go out of the ISP domain. With huge
storage capacities, such as Google CDNs, with a popularity-based caching policy
(k-LRU for Google), the limit of 90% for the hit ratio is the current challenge. Here,
our first tests show that with popularity-based caches, filled with the top-20% of the

30

3.8. Conclusion

most popular VoDs, 70% of the downloads may be managed by the ISP. The results
are produced from a real VoD dataset provided by Orange, with 100000 downloads,
collected in 2010, during one month, in one region, and involving 5000 VoDs.

This chapter also demonstrates that the P&R recommendations can provide an
improvement to predict the download of non-blockbuster VoDs, especially when the
caches have a low storage capacity.

The contribution of this chapter (the use of a simple recommender engine, based
on the collaborative filtering approach) has to be integrated in the whole dCDN
architecture (see Chapter 4). We have to test other recommendation algorithms.
We also need to conduct further tests to compare the accuracy of caching with and
without prefetching. We have to compare to other caching policies (e.g. LRU or
LFU only, combination?). These experimentations will be conducted on an extended
dataset collected during one year by Orange on a dozen of geographic regions.

Finally, one of the objective has not been yet addressed: can the geographic
information in the logs improve the prefetching? Are mid-popular contents different
from one region to another?

Beyond this recommendation method and its utility in Vipeer, another objective
was to focus on the tool MapReduce. This programming model is designed to
make it possible to run algorithms on a large scale, what is needed here since the
project covers the entire traffic of VoD distribution from an ISP. The Apache Mahout
machine learning library provides a solid base to develop new algorithms or test
existing ones.

31

4 Optimal placement of video content

4.1 Introduction

In this chapter, we intend to use the MapReduce framework to arrange the place-
ment of video content in a large-scale distributed Content Delivery Network (dCDN)
system. We introduce a push server, which is responsible for dynamically calculating
the optimal placement of requested videos onto a set of servers. The push server is
in fact a MapReduce cluster. The decision made by the push server should take into
account several factors, including the predicted user requirement, the intra-domain
network environment and the servers’ capability. The idea is that the MapReduce
framework quickly compute an optimal placement, despite the NP-hardness of the
content placement problem. Some previous works have demonstrated the potential
of MapReduce in related contexts [19].

The factors are offered by the prediction and recommendation (P&R) system
at the client side, and the statistical engines at the network and server side. The
structure of the whole distribution system is shown in Figure 4.1.

When end users start downloading their videos, their requests are registered
by the P&R module. The collected information is eventually analyzed in order to
predict the requirement of content in the next period of time. The P&R associates
each client with a set of movies that are most possible to be demanded. At the same
time, the statistical engines at the network side and the server side estimate the
cost for pushing videos into servers, the delay for sending videos from a server to a
client, etc. Then the push server compute an optimal allocation of contents based
on these predicted and statistical results.

The typical configuration of VoD service is described as follows. Assume the ISP
need to provide the VoD service for 1 million clients. Several clients share one box
with limited bandwidth of 28 Mbps (the bandwidth of a normal orange livebox).
Since the playback bit rate of the standard-definition TV is 3.5 Mbps, one box can
serve at most 8 clients. The ISP deploys 2 ·105 boxes so that there are enough boxes
to support all clients. On the other hand, we assume that there are 500 films in the
playlist, and each client is associated with 5 films. The average length of a film is
120 minutes, thus its average size is 3 GB. The storage capacity of one box is 200
GB, which means it can store around 60 movies.

33

4. Optimal placement of video content

Push Server

Prediction
Recommendation

statistical
engine statistical

engine

Figures/laptop

client behavior

Figures/switch

Figures/router

Figures/server

dCDN capability
ISP Network

cost
metrics

Figure 4.1: Distribution System

4.2 Problem Formulation

We formulate the decision of the optimal allocation as a k-product capacitated
facility location problem (k-PCFLP). Given a set of clients i ∈ I, (n = |I|), servers
j ∈ J, (m = |J |) and families of products k ∈ K, (l = |K|), we define a binary
variable xjk = 1, if product k is assigned to server j, and yijk = 1 indicating that
the demand from user i for product k is served by server j. The assignment cost
and service cost are denoted as ajk and eij. The service capability of each server is
restricted by storage and bandwidth capacity sj and bj. Moreover, we introduce an
integer constant pik ∈ {0, 1} indicating whether a chunk k is recommended to client
i or not.

Minimize
∑

J

∑

K

ajkxjk +
∑

I

∑

J

∑

K

eijpikyijk

subject to
∑

J

yijk = pik, ∀i ∈ I, ∀k ∈ K (4.1)

xjk ≥ pik · yijk, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K (4.2)
∑

K

xjk ≤ sj, ∀j ∈ J (4.3)

∑

I

∑

k∈K

pik · yijk ≤ bj, ∀j ∈ J (4.4)

Since k-PCFLP is NP-complete and we are facing a huge amount of data, the
approach to solve the problem should be easily parallelizable in MapReduce. Genetic
algorithm, which is widely used to solve complex optimization algorihtms, fits well
our requirement.

34

4.3. Introduction of Genetic Algorithm

4.3 Introduction of Genetic Algorithm

4.3.1 Basic Elements

Generally, a Genetic Algorithm consists of the following elements [20].

4.3.1.0.1 Encoding method is used to interpret a feasible solution of the problem into an
individual or a chromosome in the Genetic Algorithm. A certain number of individ-
uals (commonly 100 to 200) constitute a generation. The evolution of generations
yields the optimal or nearly optimal solution for the problem. Binary encoding is
the most common encoding method in Genetic Algorithm. Other encoding methods
are Many-Character encoding, Real-Valued Encoding and Tree encoding. For any
optimization problem, choosing an appropriate encoding method is a central factor
in the success of the corresponding genetic algorithm.

4.3.1.0.2 Fitness function estimates the value of an individual. Usually, a fitness function
assigns a score to each individual in the current generation. Higher score means
that the individual is nearer to the optimal solution.

4.3.1.0.3 Genetic Algorithm operaters lead to the evolution of generations. A typical
Genetic Algorithm involves three operators: selection, crossover and mutation.

• The selection operator choose individuals in the current generation for re-
producing individuals in the next generation. The fitter individual has more
chance to be selected to reproduce offspring. Usually, the selection is done
with replacement, that is, the same individual can be selected more than once
to be a parent.

• The crossover operator randomly decides a locus and exchanges the subse-
quences before and after that locus between two individuals to create two off-
spring. For example, the two binary encoded individuals 1001001 and 1101110
can be crossed over after the second bit, and produce two offspring as 1001110
and 1101001. In the example, the crossover occurs only once. However, there
are also multi-point crossover strategy in which the crossover takes place sev-
eral times.

• The mutation operator randomly flips some of the bits in an individual. For
instance, the offspring after crossover is 1001110. The mutation happens in
its third bit, and finally the offspring in the new generation becomes 1011110.
Mutation can occur at each bit position in an individual with very small prob-
ability (e.g., 0.001).

4.3.2 Typical Procedure

When the encoding method for feasible solution of a problem is determined, a simple
Genetic Algorithm executes as follows:

1. Start with a randomly generated population of n individuals.

35

4. Optimal placement of video content

2. Compute the fitness f(x) of each individual x in the generation.

3. The following steps are the process of reproduce offspring in the next genera-
tion, they should be executed n times to ensure that the number of population
does not change.

a Select a pair of parent individual from the current generation

b With probability Pc, cross over the parents at a randomly chosen point
(chosen uniformly in all locus) to create two offspring. If no crossover
happens, the produced offspring are exact copies of the parents.

c Mutation takes place at each locus of the two created offspring with proba-
bility Pm. Then include the new individuals into the next generation. If
n is odd, one offspring can be discarded randomly.

4. Replace the current generation with the new generation.

5. Go to step 2 until some convergence condition is reached.

Typically, a Genetic Algorithm is iterated for 50 to 500 generations. Usually,
one or more highly fit individuals can be found in the last generation.

4.4 Modeling k-PCFLP by Genetic Algorithm

We now concentrate on our particular k-PCFLP. As it is observed in the linear
program in section 4.2, in our special case there is no fixed cost for a facility, instead,
we introduce an assignment cost for each product. Since establishing more facilities
does not increase the total cost, we assume that all the servers are on duty. On
the other hand, the service capability of each server is restricted by its storage and
bandwidth capacity, so these conditions should be reflected in the encoding method
or fitness function.

4.4.1 Encoding

We use the real value encoding to form an individual. The length of each individual is
the sum of the storage capacity of all servers. The value of each gene is the sequence
number of a product. For example, given an instance with |K| = 6, |J | = 3, and
the storage capacity of every server is 3. Then, the individual (1, 2, 3, 4, 5, 6, 0, 3, 5)
means that products (k1, k2, k3) are on server 1, (k4, k5, k6) are offered by server 2,
and (k3, k5) are stored by server 3.

4.4.2 Fitness Function

The fitness value is calculated by the objective function in the linear program. Since
the value of xjk is already determined by an individual, in the fitness function we
have to decide the value of each yijk. In other words, for every product we assign
suitable servers to the clients requiring the product. More concretely, the assignment
should find the optimal solution based on the given individual.

36

4.4. Modeling k-PCFLP by Genetic Algorithm

s t

i1

i2

j1

j2

i1k2

i1k3

i1k4

i2k1

i2k3

i2k4

j1k1

j1k3

j1k4

j2k2

j2k4

flow ∈ [0,∞)

cost = 0

flow ∈ [0, 1]

cost = 0
flow ∈ [0,∞)

cost = eij

flow ∈ [0,∞)

cost = 0

flow ∈ [0, bj]

cost = 0

Figure 4.2: Example of MCMF

We model the assignment as an other optimization problem, Minimum Cost
Maximum Flow (MCMF) Problem. There are five classes of vertices in the flow
graph. A virtual source s and a virtual sink t are used for flow computation. Client
node i and server node j represent the clients and servers in k-CPFLP. We use a
type of nodes called cli-pro ik to indicate that client i is interested in product k.
Similarly, a class of nodes serv-pro jk implies that server j stores product k. An
example of the flow graph with 2 clients, 2 servers and 4 products is shown in figure
4.2.

In the example, client i1 is asking products {k2, k3, k4}, and i2 is demanding
{k1, k3, k4}. The products k1 and k3 are on server j1, k4 is offered by j2 and k4
is stored by both j1 and j2. There is one link between the source node and each
of the client node. Then a client node is connected with every cli-pro node where
the client presents. To satisfy the constraint (4.2), we impose that the flow can be
passed from a cli-pro node to a serv-pro node, only if the product indicated by the
cli-pro is stored by the server denoted by the serv-pro node. Thereafter, every serv-
pro node should transmit the flow to the corresponding server node. Finally, the
flow goes from each server node to the sink. The flow constraints and the costs of
links between two classes of nodes are also given in the graph. The link from source
to client node has no flow constraint and costs nothing. The flow from client node
to cli-pro is restricted by one, since the total flow should not overpass the value
of

∑

i∈I

∑

k∈K pik. Together with the objective of maximum flow, the constraint
(4.1) is ensured. The service cost defined in k-CPFLP is now associated with the
cost of each link between cli-pro and serv-pro. It takes eij for a unit of flow to be
transmitted from ik and jk. At last, the flow on the link from server node and sink
is limited by the bandwidth of the server bj, so that the constraint (4.4) of k-CPFLP
is guaranteed in the solution of MCMF.

The optimization of MCMF can be divided into two parts. The first part is to
find the max flow in the graph. Using the well known Fold−Fulkerson algorithm,
the complexity of this part is bounded by O(nml2 ·

∑

i∈I

∑

k∈K pik). If the resulting
maximum flow is less than

∑

i∈I

∑

k∈K pik, the fitness value of the given individual
is set to ∞, since the bandwidth given by the individual is insufficient for the

37

4. Optimal placement of video content

requirement on one or more products. Otherwise, the maximum flow is regarded as
a parameter of the second part, a minimum cost flow problem. This problem can
be solved by the minimum mean cycle canceling method proposed in [9], which runs
in O((m + n)nml2 · log ((m+ n)l) · min {log ((m+ n)l · C), nml2 · log ((m+ n)l)}),
where C is the maximum absolute value of a link cost. Since the constraint (4.3) is
ensured by the encoding, we obtain the optimal solution for the MCMF as well as
the k-CPFLP based on the given individual.

4.4.3 Initialization and selection

The size of population and the initial generation give a great impact on the perfor-
mance of the Genetic Algorithm. We should find a trade-off between the efficiency
and the completeness of the search region. In our case, if MapReduce significantly
ameliorates the performance of Genetic Algorithm, we may potentially have a large
number of population. The completeness is guaranteed when all products as well
as the empty storage space appear in the research process. We deploy all products
initially, and the gene representing empty storage space is given by the mutation
operation described later. Moreover, the initial generation should be carefully de-
signed because the products in our problem are not uniformly requested, therefore
popular products should have more replicas in the servers. The number of replicas
of a product depends on the total storage capacity of servers and the popularity of

the product. Specifically, the number equals
⌈

∑

j∈J sj · g(k)
⌉

, where g() is the prob-

ability density function of the popularity distribution. Then, we randomly choose
the location for each replica. Unpopular products have higher priority to be located,
so that the chance that they disappear in an individual becomes lower. Moreover,
two replicas of one product should never exist on the same server.

To ease the parallelization of our Genetic Algorithm, we use the Tournament
Selection. Every parent is chosen from two individuals that are randomly picked up
from the current generation. A random number r1 and a threshold thr1 are used to
decide which individual becomes the parent. If r1 < thr1, we select the individual
with lower fitness value (the fitter individual), otherwise, the one with higher fitness
value is chosen as the parent. Then the two are returned to the population, they
are allow to be selected again.

4.4.4 Crossover and Mutation

Remind that in our Genetic Algorithm the form of an individual should strictly
obey constraint (4.3), the common uniform crossover for binary encoding is not
suitable, instead, we use a merge operation. Besides constraint (4.3), the result
of the mergence should also ensure that no two replicas of the same product are
located on one server. Therefore, the operation is implemented on each section of
genes representing one server. For a server j, the first step of the mergence may
produce a multiset with u genes, where sj ≤ u ≤ 2sj. If sj < u, we randomly
choose sj genes from the multiset, so that the resulting section still follows (4.3).
But in this case, the gene representing one product may appear twice in the same
section. So preselection is necessary to treat the gene that exists in both parents

38

4.5. Perspective of Using MapReduce

sections j1 j2 j3

parent 1,2,3 4,5,6 0,3,5
parent 3,4,5 6,0,1 2,3,5

r2 0.7 0.5 0.4
preselection non 6 3,5
mergence 1,2,3,4,5 0,1,4,5 0,2
offspring 1,2,4 6,0,5 3,5,2

Table 4.1: Crossover by mergence

before the mergence. Particularly, we use another random number r2 and threshold
thr2. If r2 < thr2, the repeated genes in the multiset are picked out, and the
corresponding product is located on the server. Otherwise, one of the repeated
elements is eliminated so that the multiset becomes a normal set, where we randomly
select genes for the offspring. Take the same example described in section 4.4.1, we
show our special crossover operation in table 4.1, in the instance, we set thr2 = 0.6.

The mutation operation is reserved especially for the gene “0”, since in the
initializing stage we fulfill all the storage space with products. After the crossover
operation, each gene has the probability pmut = 0.001 to mutate to 0.

4.4.5 Replacement and Termination

Considering the parallelization, we implement the elitist strategy in the generation
revolution. Assume the number of current population is Np, then each generation
must produceNp offspring as well. In theNp offspring, the ones with less fitness value
than the minimum fitness value in the current generation are qualified to enter the
next generation. If the number of qualified offspring is Nq, then the Nq individuals
with highest fitness value (less fit individuals) are replaced by new individuals to
form the new generation. On the other hand, the algorithm terminates ifNp offspring
are generated, however, no qualified individual can be found.

4.5 Perspective of Using MapReduce

MapReduce will be used to ameliorate the performance of the most time-consuming
parts in the Genetic Algorithm. Namely, the evaluation of the initial population
and offspring, as well as the production procedure of offspring. We should develop
two different MapReduce algorithms to tackle the initial population and offspring.

39

5 Conclusion

To conclude this deliverable, we prove the need of the MapReduce framework inside
the ViPeeR project and more especially for the WP4. On one hand, we need to
improve and continue to work on the MapReduce framework and so the Apache
Hadoop project. On the other hand, we need to apply this framework in the Genetic
Algorithm to ameliorate the performance of the most time-consuming parts. In
parallel, we will continue on the prefetching study by applying other algorithms in
order to make some comparisons and fine tune the method.

41

Bibliography

[1] Hadoop: Open source implementation of mapreduce. http://lucene.apache.
org/hadoop/.

[2] C. Bothorel. Analyse de réseaux sociaux et recommandation de contenus non
populaires. Revue des nouvelles technologies de l’information (RNTI), A.5,
2011. ISBN 9782705682217.

[3] F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso. Comparison of col-
laborative filtering algorithms: Limitations of current techniques and proposals
for scalable, high-performance recommender systems. ACM Trans. Web, 5:2:1–
2:33, February 2011.

[4] L. Candillier, K. Jack, F. Fessant, and F. Meyer. State-of-the-art recom-
mender systems. Collaborative and Social Information Retrieval and Access:
Techniques for Improved User Modeling, pages 1–22, 2009.

[5] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee, and
S. Mukherjee. Scheduling in MapReduce-like Systems for Fast Completion
Time. In Proc. of IEEE INFOCOM, 2011.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proc. of OSDI, 2004.

[7] E. Friedman and S. Henderson. Fairness and efficiency in web server protocols.
In Proc. of Sigmetrics, 2003.

[8] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica.
Dominant resource fairness: Fair allocation of multiple resources types. In Proc.
of NSDI, 2011.

[9] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by can-
celing negative cycles. J. ACM, 36:873–886, October 1989.

[10] M. Hahsler. Developing and testing top-n recommendation algorithms for 0-1
data using recommenderlab. Technical Report, 2011.

[11] M. Harchol-Balter. Queueing disciplines. In Wiley Encyclopedia Of Operations
Research and Management Science. John Wiley & Sons, 2009.

43

Bibliography

[12] Y. He and Y. Liu. VOVO: VCR-Oriented Video-on-Demand in Large-Scale
Peer-to-Peer Networks. Parallel and Distributed Systems, IEEE Transactions
on, 20(4):528–539, 2009.

[13] Y. He, G. Shen, Y. Xiong, and L. Guang. Optimal prefetching scheme in p2p-
vod applications with guided seeks. IEEE Transactions on Multimedia, 11(1),
2009.

[14] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl. Evaluating col-
laborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53,
2004.

[15] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang. Challenges, design
and analysis of a large-scale p2p-vod system. SIGCOMM Comput. Commun.
Rev., 38:375–388, August 2008.

[16] Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to
alleviate the sparsity problem in collaborative filtering. ACM Transactions on
Information Systems (TOIS), 22(1):116–142, 2004.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data-
parallel programs from sequential building blocks. In Proc. of ACM EuroSys,
2007.

[18] K. Kc and K. Anyanwu. Scheduling Hadoop jobs to meet deadlines. In Proc.
of CloudCom, 2010.

[19] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method
for solving graph problems in mapreduce. In Proceedings of the 23rd ACM
symposium on Parallelism in algorithms and architectures, SPAA ’11, pages
85–94, New York, NY, USA, 2011. ACM.

[20] M. Michell. An introduction to genetic algorithms. The MIT Press, 1996.

[21] Y.-J. Park and A. Tuzhilin. The long tail of recommender systems and how
to leverage it. In RecSys ’08: Proceedings of the 2008 ACM conference on
Recommender systems, pages 11–18, New York, NY, USA, 2008. ACM.

[22] P. Resnick and H. R. Varian. Recommender systems - introduction to the
special section. Commun. ACM, 40(3):56–58, 1997.

[23] T. Sandholm and K. Lai. Dynamic proportional share scheduling in Hadoop. In
Proc. of Workshop on Job Scheduling Strategies for Parallel Processing, 2010.

[24] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295. ACM, 2001.

[25] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-L. Wu,
and A. Balmin. FLEX: A slot allocation scheduling optimizer for MapReduce
workloads. In Proc. of International Middleware Conference, 2010.

44

Bibliography

[26] J. Wu and B. Li. Keep Cache Replacement Simple in Peer-Assisted VoD
Systems. In IEEE INFOCOM 2009 - The 28th Conference on Computer
Communications, pages 2591–2595. IEEE, Apr. 2009.

[27] T. Xu, B. Ye, Q. Wang, W. Li, S. Lu, and X. Fu. Apex: A personalization
framework to improve quality of experience for dvd-like functions in p2p vod
applications. In Quality of Service (IWQoS), 2010 18th International Workshop
on, pages 1 –9, june 2010.

[28] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Delay scheduling: A simple technique for achieving locality and fairness in
cluster scheduling. In Proc. of ACM EuroSys, 2010.

45

