

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 1/57

Programme ANR VERSO

Projet VIPEER

Ingénierie du trafic vidéo en intra domaine basée sur
les paradigmes du Pair à Pair

Décision n° 2009 VERSO 014 01 à 06
du 22 décembre 2009

T0 administratif = 15 Novembre 2009
T0 technique = 1er Janvier 2010

Livrable 4.2

Preliminary report on the CDN/dCDN design
Auteurs :

C. Bothorel (Telecom Bretagne), Z. Li (Telecom Bretagne), G. Simon
(Telecom Bretagne), F. Albanese (Eurocom), P. Michiardi
(Eurocom), J. Garnier (NDS Technologies France)

Compilé par :
J. Garnier (NDS Technologies France), A. Gravey (Telecom

Bretagne)

Juillet 2011

Telecom Bretagne; Eurecom; INRIA; France Telecom; NDS Technologies France; ENVIVIO

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 2/57

Résumé: (15 lignes)

The main objective of the VIPEER project is to propose novel mechanisms to integrate traffic
engineering (i.e. guiding the traffic where resources are available) in the current video
streaming delivery system, so as to ameliorate the client QoE. VIPEER builds upon the
collaboration between a traditional CDN and a peer-assisted CDN or “distributed CDN”
(dCDN), i.e. an overlay controlled by the network operator using P2P paradigms. This
document presents two approaches for coordinating a classical distribution via a CDN with
distribution architectures implemented within the ISP.
The first approach builds upon P2P aided content distribution, whereas the second builds
upon CCN based content distribution. The efficiency of both approaches is assessed by
models, simulations and experimentations. Their efficiency is shown to depend on the
popularity of distributed contents.
The reported studies show that both approaches may benefit from content-oriented caching
strategies, and in particular “pre-fetching” which consists in replicating content in the dCDN
nodes before they are requested based on their popularity. In order to implement prefetching
capabilities, we need to analyze users’ behavior. The last part of the deliverable describes
datasets we plan to use to analyse prefetching techniques.

Keywords: Content Delivery Network, P2P, Content Centric Network, Peer Assisted

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 3/57

Table des matières

1	
 Preface .. 7	

1.1	
 Purpose of this document .. 7	

1.2	
 Referenced VIPEER deliverables ... 7	

1.3	
 List of Acronyms ... 7	

2	
 The CYCLOPS approach ... 9	

2.1	
 Motivations .. 9	

2.2	
 Cost-Performance Tradeoff Model ... 11	

2.2.1	
 Model ... 12	

2.2.2	
 Considerations .. 14	

2.3	
 System Design and Implementation .. 15	

2.3.1	
 Overview of CYCLOPS .. 15	

2.3.2	
 The CYCLOPS Swarm Monitor ... 16	

2.3.3	
 The CYCLOPS Content Server ... 16	

2.4	
 Experimental Method and Setup ... 17	

2.5	
 Experimental Results ... 19	

2.5.1	
 Flash Crowd Experiments .. 19	

2.5.2	
 Waves of Arrivals Experiments ... 20	

2.5.3	
 Live Internet Experiments .. 22	

2.6	
 Additional Considerations ... 24	

2.7	
 Related work ... 26	

2.8	
 Conclusion ... 28	

3	
 CCN with Cooperative Caching ... 29	

3.1	
 Introduction and Background .. 29	

3.1.1	
 Context: Content Centric Networking .. 29	

3.1.2	
 Our Focus: ISP-friendly Time-shifted Streaming .. 30	

3.1.3	
 Our Proposal: Cooperative In-Network Caching ... 30	

3.1.4	
 Our Contributions: Algorithms and CCN Protocol .. 31	

3.2	
 Network Model ... 32	

3.3	
 Initialization Stage ... 32	

3.4	
 Distributed Algorithm ... 33	

3.5	
 Augmented CCR Protocol ... 35	

3.5.1	
 CCN in a Nutshell .. 35	

3.5.2	
 New Tables in CCN ... 35	

3.5.3	
 Distribute Chunks in the Cooperative Cache ... 35	

3.5.4	
 CCS Consistency .. 36	

3.6	
 Analysis of Cooperative Cache ... 37	

3.7	
 Experimental Results ... 40	

3.7.1	
 Simulations on Time-shifted TV .. 40	

3.7.2	
 Simulation Setup .. 40	

3.7.3	
 Results Analysis ... 41	

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 4/57

3.7.4	
 Simulations on VoD service ... 44	

3.8	
 Conclusion ... 46	

4	
 Real Datasets for prefetching and simulation .. 47	

4.1	
 A real VoD dataset .. 47	

4.2	
 A dataset for prefetching ... 51	

4.3	
 Merging the datasets .. 51	

4.3.1	
 Popularity classification ... 51	

4.3.2	
 Merging method and resulting dataset ... 52	

4.4	
 Conclusion ... 54	

References .. 55	

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 5/57

Table des figures

Figure 1 : Mean download time as a function of the server rate (N=100, M=2000, µ=0.5). ... 14	

Figure 2 : Overview of Cyclops Architecture: The content server and swarm monitor reside in

the cloud in distinct virtual machines, with off-cloud bandwidth used for data feed (to the
swarm) and control feed (from the swarm). ... 16	

Figure 3 : Flash Crowd: content download times (file size: 50MB). 19	

Figure 4 : Waves of Arrivals: content download times (file size: 50MB). 21	

Figure 5 : Waves of arrivals: availability over time. .. 22	

Figure 6 : Live Experiment: Evolution of swarm size over time. .. 23	

Figure 7 : Live Experiment: content download times (file size: 357.5 MB). 24	

Figure 8 : Example of cooperative cache ... 31	

Figure 9 : Individual caches connected to a server .. 37	

Figure 10 : Cooperative caches connected to a server ... 37	

Figure 11 : Caches in tandem ... 39	

Figure 12 : Caching diversity: the number of distinct chunks stored in the set of CRs when the

number of labels k varies .. 41	

Figure 13 : ISP-friendliness: the number of times each server located is accessed. The smaller

is the bar, the more ISP-friendly is the caching strategy .. 42	

Figure 14 : Cumulative Distribution Function. The y axis is the ration of chunks; the x axis is

the time elapsed between two consecutive accesses on a CR. ... 43	

Figure 15 : Caching diversity varies with k .. 45	

Figure 16 : Chunk distribution of the 10 films ... 45	

Figure 17 : Number of times each server is accessed .. 46	

Figure 18 : ISP VoD downloading logs: timestamp, user ID, film ID 48	

Figure 19 : Downloads during the week-end or the week. ... 48	

Figure 20 : Downloads each different day. .. 49	

Figure 21 : The “Top” users who download the most. ... 49	

Figure 22 : Downloading profile of users who downloaded only once during the 6 weeks of

DataISP. ... 50	

Figure 23 : Comparison between the downloading profiles. ... 50	

Figure 24 : Power distribution of ratings in DataWEB. .. 52	

Figure 25 : DataISP types of films: popular films and films downloaded once. The “Mid-

popular” films are the delta between the global red line and the blue one. 52	

Figure 26 : Popularity merging between ISP downloaded films and Web annotated films. ... 53	

Figure 27 : Two real datasets and our generated dataset. ... 53	

Figure 28 : Weekday and week-end downloads in the generated dataset. 54	

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 6/57

Liste des Tables
Table 1 : Referenced VIPEER deliverables ... 7	

Table 2 : Flash Crowd: average server load (file size: 50MB) .. 20	

Table 3 : Waves of Arrivals: server load & overhead (file size: 50MB) 21	

Table 4 : Live Experiment: service statistics (file size: 357.5 MB) ... 24	

Table 5 : Comparison of Response Time and Requested Time Interval 43	

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 7/57

1 Preface
1.1 Purpose of this document
This document aims to present the approach for the design of the dCDN. Based on the state of
the state of the art, we have identified two differents approachs for the design:

• The first approach, CYCLOPS, builds upon P2P aided content distribution. With
CYCLOPS, the CDN server is able to adjust the CDN-to-ISP bandwidth utilization so
as to achieve a specific objective based on a feedback signal related to the
performance of content distribution.

• The second approach builds upon CCN based content distribution. This approach is
called CCN+: cooperative caching policy based on CCN Paradigm. CCN+ relies on
the storage capacity of a set nodes within the ISP to minimize the amount of queries
for video streams to be treated by (CDN) servers outside the ISP network.

The reported studies show that both approaches may benefit from content-oriented caching
strategies, and in particular “pre-fetching” which consists in replicating content in the dCDN
nodes before they are requested, based on their popularity. For CYCLOPS, it is necessary to
understand how to feed the swarm and which contents to choose. For CCN+, we think that
hybrid caching policies combining passive caching policies with prefetching strategies would
improve performance. In order to implement prefetching capabilities, we need to analyze
users’ behavior. The last part of the deliverable describes datasets we plan to use to analyse
prefetching techniques.

1.2 Referenced VIPEER deliverables
Table 1 lists documents and other reference sources containing information that may be
essential to understanding topics in this document.

Table 1 : Referenced VIPEER deliverables

No. Designation Title

1. D4-1 State of the Art

1.3 List of Acronyms

Term Definition

AS Autonomous Systems

AMI Amazon Machine Image

AWS Amazon Web Services

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 8/57

Term Definition

BT BitTorrent

CCN Content Centric Network

CCS Collaborative Content Store

CDN Content Delivery Network

CR Content/Caching Router

CRT Collaborative Router Table

CS Content Store

dCDN Distributed CDN

DoS Denail of Service attack

Ebone European Backbone

EC2 Elastic Computing Cloud

ECDF Empirical Cumulative Distribution Function

FIB Forwarding Information Base

ICT Information and Communication Technologies

ISP Internet Service Provider

LAP Label Allocation Process

LFU Least Frequently Used

LRU Least Recently Used

OF On-line Feedback

PIT Pending Interest Table

POP Point Of Presence

QoE Quality of Experience

S3 Simple Storage Service

STB Set Top Box

VoD Video on Demand

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 9/57

2 The CYCLOPS approach
In the following sections we will describe a framework, called “CYCLOPS”, that is intended
to perform content distribution focusing on the resource utilization of content servers.
In the context of the VIPEER project, we assume the distributed CDN (dCDN) to play the
role of a P2P swarm interested in a particular content for download. Specifically, the CDN
interacts with the dCDN by managing the trade-off between CDN-to-ISP bandwidth
utilization and performance of content delivery. We present here a framework in which the
CDN server is able to adjust the CDN-to-ISP bandwidth utilization so as to achieve a specific
objective based on a feedback signal related to the performance of content distribution. Our
framework is general enough to allow for many possible combinations of objectives and
feedback signals. For instance, the objective may simply be to keep dCDN alive based on a
feedback signal indicating the level of redundancy for particular pieces of content in the
dCDN. Alternately, the objective may be to ensure a desirable level of service based on a
feedback signal gauging average delivery time to clients.

At the moment, we address the simpler case of the bulk transfer of data, not streaming.
However, CYCLOPS offers space of maneuver for the adaptation of streaming strategies.

As discussed in the description of work of the project, the content servers inject content in the
ISP network toward clients that consume it; the servers location can be either within the ISP
network - as part of the dCDN - or can be external, e.g., in the case of servers operated by a
third-party CDN.

The mechanism discussed in the following takes up the problem of gauging the resource
utilization - namely bandwidth - of content servers: our approach proves useful in both cases
of server location:

• In the case of a content server within the ISP, CYCLOPS reduces the resource
utilization, offloading the content distribution to already available, yet unexploited,
network components like the set-top-boxes (STB).

• In the case of a content server of an external CDN, our approach reduces the costs that
the ISP incurs to use its transit links to fetch the content.

The remainder of the document is organized as follows: first we provide the motivations for
our work, geared toward Cloud-Based content distribution. We then move to provide the
intuitions, which stem from a mathematical model of content distribution, behind our scheme.
Finally, we describe CYCLOPS in details and develop a methodology for an experimental
evaluation of our mechanism.

2.1 Motivations
Cloud computing has emerged as a compelling paradigm for deploying Information and
Communication Technology (ICT) solutions on the Internet, because it enables solution

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 10/57

providers to easily scale up or down, or migrate their offerings seamlessly across resources –
compute servers, storage, platforms, and services – offered by one or more cloud providers,
yielding significant cost savings due to economies of scale. More importantly, the elasticity of
the “pay-as-you-go” paradigm enables solution providers to reign in operating costs,
especially when demand is highly dynamic, or unpredictable. For many cloud-based ICT
solutions, gauging demand is straightforward. For instance, a cloud-based web
hosting/caching solution can easily gauge demand – and hence scale up or down its use of
elastic cloud resources – by observing the number (or average response time) of its web
transactions.

Increasingly, however, cloud-based solutions are evolving from simple client-to-cloud
interactions (reminiscent of the traditional client-server model) into swarm-to-cloud
interactions, wherein the cloud-based solution is not merely responding to individual client
requests, but rather to the collective demand of a “swarm” of clients, making the
determination of what constitutes demand for cloud resources for purposes of elastic resource
allocation far more complicated. In the following sections, we propose a general framework
and present a prototype implementation that enable elasticity for a canonical “swarm-to-
cloud” application – namely peer-assisted content delivery.
Towards Elastic Cloud-Based, Peer-Assisted CDNs: Traditional Content Delivery
Networks (CDNs) such as Akamai [1] were conceived as special-purpose clouds catering
almost exclusively to large, highly-popular content providers such as iTunes and CNN.
Today, the advent of cloud-based storage and delivery solutions such as Amazon S3 [2] and
CloudFront [2] make it possible for much smaller-scale content providers to deploy and
elastically provision their own cloud-based CDNs in an almost real-time fashion. The major
cost contributor for such cloud-based CDNs is off-cloud bandwidth: the bandwidth consumed
to deliver content from the CDN content servers (in the cloud) to the CDN clients (off the
cloud). To reduce off-cloud bandwidth, an increasing number of CDN solutions (including
those offered by major market players such as Akamai [1], Limelight [3], and Amazon [2])
rely on swarm-based, peer-assisted approaches that leverage the uplink capacity of end-users
to reduce off-cloud bandwidth consumption. This approach, which is particularly effective for
highly popular content, can be seen as seamlessly bridging client-to-cloud and swarm-to-
cloud interactions: For less-popular content, a cloud-based, peer-assisted CDN behaves as a
traditional (client-server) CDN system, whereas for high-popular content, it behaves as a
peer-to-peer system.

Existing cloud-based peer-assisted CDNs rely on swarm-based protocols such as
BitTorrent [4]. While such protocols are quite efficient for exchanging content among peers
(in terms of download time, resource utilization, and fairness), they are not designed to
provide the content source with the means to gauge the marginal utility of its contribution to
the swarm. Specifically, in our cloud-based peer-assisted CDN setting, swarm-based protocols
do not enable the content server (in the cloud) to gauge and hence manage the inherent
tradeoffs between off-cloud bandwidth utilization and the efficiency of content delivery. This
is precisely the capability that the work presented in this document aims to provide.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 11/57

Work Scope and Contributions: We present a novel framework for cloud-based peer-
assisted CDN solutions in which the content server (inside the cloud) is able to adjust the off-
cloud bandwidth it contributes to the swarm (the set of clients outside the cloud) so as to
achieve a specific objective based on a feedback signal related to the state of the swarm. Our
framework is general enough to allow for many possible combinations of objectives and
feedback signals. For instance, the objective may simply be to keep the swarm alive based on
a feedback signal indicating the level of redundancy for particular pieces of content in the
swarm. Alternately, the objective may be to ensure a desirable level of service based on a
feedback signal gauging average delivery time to clients.

To establish a reference model for these as well as other combinations of objectives and
feedback signals, we develop in Section 2.2 an analytical model that quantifies the cost-
performance tradeoff for cloud-based, peer-assisted content delivery. Our model relates off-
cloud bandwidth utilization (the cost incurred by the provider) to the average delivery time
(the performance observed by clients). Along these lines, our findings suggest the existence of
a quiescent (close to optimal) operating point beyond which the marginal utility from
additional off-cloud bandwidth utilization is negligible.

Armed with this understanding, in Section 2.3, we present the design and prototype
implementation of CYCLOPS, a peer-assisted content delivery cloud service. The content
server in CYCLOPS is able to modulate its bandwidth contribution to the swarm so as to remain
in the vicinity of the aforementioned quiescent operating point – thus minimizing its cost
without sacrificing performance. Our design relies on the feedback signal provided through an
on-line monitoring tool, which we have implemented as part of CYCLOPS.

To demonstrate the effectiveness of our approach, in Sections 2.4 and 2.5 we report on a
fairly extensive series of Internet experiments, in which we compare the performance of
CYCLOPS to those of “open-loop” swarm-based protocols used by cloud-based content
delivery services. Our experiments are carried out both in a controlled environment (by
delivering content to PlanetLab clients) and in the wild (by delivering content to a real
Internet user population). These experiments show that our feedback-based approach reduces
drastically the volume of data served from the cloud (and hence the cost incurred by the
content provider) with negligible performance degradation. More to the point, in live
experiments involving more than 10,000 users exhibiting highly dynamic arrival and
departure patterns, we were able to document monetary savings of up to two orders of
magnitudes for our system.

2.2 Cost-Performance Tradeoff Model
In this Section we develop a model that relates off-cloud bandwidth utilization by a content
server in the cloud to the average delivery time perceived by a set of swarming users (clients)
outside the cloud.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 12/57

2.2.1 Model
We consider a dynamic environment, where clients join a swarm, download the content, and
eventually leave the system. The number of clients in the swarm is not known a priori, but it
can be characterized by arrival and departure rates. These rates may fluctuate drastically and
such fluctuations are typical for “hot” viral Internet content, which gets published, gains
significant popularity fairly quickly, but eventually dies off over time. In this work, we
assume that for the content download timescale (say minutes) they remain constant, allowing
the system to reach a steady state in which the arrival and departure rates equalize, and
consequently the average number of clients in the swarm is constant.

Let N be the steady state average number of clients in the swarm, and let the content be
divided into M independent pieces. If M>>1 then a client holds M/2 pieces on average. For
analytical tractability, we do not model network bottlenecks or losses.

Consider a birth-death Markov chain whose state represents k, the number of replicas of a
single (arbitrary) piece of content. Note that one can envision an identical, independently
evolving Markov chain for each one of the M pieces that make up the content. For a generic
state, there are two possible transitions: (1) either the piece is replicated, resulting in a piece
birth, and thus a transition from sk state to state 1+ks , or (2) a client holding a replica of the
piece leaves the swarm and is replaced by a new client that does not have the piece, resulting
in a piece death, and thus a transition from state sk to state sk− 1 .

Let kα indicate the average rate at which the content server injects a piece in the swarm at
state sk . Let λ denote the piece replenishment rate resulting from client contributions: λ is
computed by dividing the aggregate upload capacity of all N clients by the total number of
pieces M. Both kα and λ are expressed in pieces per second.

For sake of simplicity, we assume a random piece replication strategy: in contrast to more
sophisticated replication strategies [5], random piece selection simplifies analysis and
provides conservative performance bounds. Thus, the probability of choosing to replicate the
particular piece (modeled by the Markov chain) out of the M/2 pieces available at the client is
2/M. The probability that no client will choose to replicate that piece is ()kM/21− , since k is
the number of clients holding the piece in state. This yields a probability of ()kM/211 −− for
going from state sk to state 1+ks .

To compute the transition rate from state sk to state 1+ks we must also account for the rate

kα at which the content server independently injects the piece into the swarm. This yields a

transition rate of ()() k
k α+Mλ /211 −− . Notice that state s0 is a special state in which only the

content server can inject the piece. Thus, the transition rate from state s0 to state s1 is equal
to the server upload rate 0α .

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 13/57

Let µ denote the client departure rate (measured in clients per second). The probability of a
death out of state sk is the probability that any one of the k clients holding the piece leaves
the swarm. The probability that a given departure is by one of these k users is k/N. Thus, the
transition rate from state sk to state sk− 1 is given by µk/N.

In summary, the transition rates from state sk to state sk ' , denoted by sk , k ' , can be
expressed as follows:

 ()()

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤−

∧

−−

otherwise
Nk<k=kif
N<k<+k=kif

=k=kif

Nµk
α+Mλ·

α

=s
'

'

'

k
k

'kk, 01,
01,

10

0
/
/211
0

 (1)

Note that, since the Markov chain is finite (N+1 states), the steady state solution exists.
We now compute the probability 0π to be in state s0 . For simplicity, we consider the case

in which the content server uploads a piece at an average rate α=αk , ∀k, irrespectively of its
state; by solving the Markov chain we get:

 ()
1

0 11
−

⎥
⎦

⎤
⎢
⎣

⎡ Φ+N
µ
α+=π (2)

Where

 ∏∑
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 1

12

1
2111 k

=i

iN

=k

k

α+
M

λ
k!µ

N=Φ

We now proceed to finding the relationship between the average server rate α and the
mean download time. Each client obtains 1/N of the swarm’s upload capacity, which is
M(λ+α). Since the content is composed of M pieces, the mean download time can be
computed as T=M/(M(λ+α)/N)=N/(λ+α). This is true as long as the probability of being in
state is small enough. If this probability increases, then we have an additional term for the
mean time spent in state s0 : this can be computed by multiplying the probability of state s0 (
0π) by the time spent in state 0s (1/α). Hence, the mean download time is bounded by:

α
π+

α+λ
NT 0≤ (3)

To illustrate the utility of this model, consider a swarm of N=100 clients downloading
content consisting of M=2000 pieces, with a client departure rate of µ=0.5 clients per second,
and a mean client upload rate of λ={1.5µ,3µ,6µ} pieces per second. Figure 1 shows the
average download time as a function of the server upload rate, as predicated by Equation 3.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 14/57

Figure 1 : Mean download time as a function of the server rate (N=100, M=2000, µ=0.5).

Figure 1 quantifies the tradeoff between the off-cloud bandwidth utilization (i.e., the average
upload rate α of the content server) and the average delivery rate to clients involved in a
swarm with upload capacity λ. It shows three operating regions. The first operating region
(left-side of the plot) is when α tends to zero, resulting in piece starvation, and a
corresponding increase in download time. The second operating region (right-side of the plot)
is when α tends to values that far exceed λ, resulting in a client-server-like mode of operation.
The third and more interesting operating region is an intermediate one, within which an
increase in α does not result in a corresponding decrease in download time. The “width” of
this region depends on the health of the swarm, which is a function of the content popularity
captured by the client arrival/departure rate µ, and the mean client upload bandwidth λ. For
the particular settings used in Figure 1, this intermediate region is given by α ∈[10,1000]
piece/sec.

The behavior described by our model suggests the existence of a quiescent operating point
(at the transition between the first and second operating regions depicted in Figure 1), beyond
which the marginal utility from additional off-cloud bandwidth utilization is negligible. A
content server operating around this quiescent point would be fully leveraging the uplink
bandwidth of its clients, while minimizing its own cost: operating below this quiescent point
would jeopardize performance, and operating above this quiescent point would be cost
inefficient.

2.2.2 Considerations
Armed with this observation, we are now ready to describe the design and prototype
implementation of a content server that uses a feedback signal to adjust its bandwidth
contribution to the swarm so as to remain in the vicinity of a nominal quiescent operating

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 15/57

point. It is important to notice that the prototype we present in the following is not an explicit
implementation of the model: the design is inspired by the key observations made above.

While our framework allows for many combinations of objectives and feedback signals, in
the remainder of this work we focus on the objective of maximizing the performance per unit
cost, using the availability of content in the swarm as the feedback signal.

2.3 System Design and Implementation
We now present the design of CYCLOPS, our cloud-based peer-assisted content delivery
service.1

2.3.1 Overview of CYCLOPS
As depicted in Figure 2, our CYCLOPS service consists of a content server and a swarm
monitor, both residing in the cloud. The swarm monitor interprets the signaling messages
exchanged between swarming clients, and generates a feedback signal that enables the content
server to gauge the marginal utility of its contribution to the swarm. The content server
participates in the swarming protocol to satisfy client requests, but only feeds the swarm when
its contribution is deemed necessary (based on the feedback signal). In CYCLOPS, the swarm
feeding rate is set to maximize the swarm performance-per-unit-cost, using the availability of
content in the swarm as the feedback signal. The model given in Section 2.2 shows that the
quiescent operating point for this objective is the minimum rate that avoids swarm starvation.

1 Our CYCLOPS service can be seen as injecting bursts of content into a swarm of clients,
just as in Greek mythology the primordial one-eyed giant Cyclopes were the source of Zeus’

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 16/57

Figure 2 : Overview of Cyclops Architecture: The content server and swarm monitor reside in the cloud in
distinct virtual machines, with off-cloud bandwidth used for data feed (to the swarm) and control feed

(from the swarm).

CYCLOPS is conceived to work with any swarm-based application/protocol that features (1) a
coordinating entity that tracks all swarm participants, enabling them to establish peer-to-peer
connections; (2) content that is divided into pieces to be distributed / exchanged
independently; and (3) a control messaging scheme used by swarm participants to advertise
piece availability.

For practical reasons, we present our system and conduct our experiments focusing on a
single content server, used to deliver a single content (file) to a set of clients. Problems related
to concurrent swarms are orthogonal to our approach, and the solutions proposed in the
literature, e.g., [6], can be integrated independently. Similarly, issues related to the efficiency
of the distribution process, solved using approaches based on traffic locality, are
complementary to our solution, and previous work on this topic, e.g., [7, 8], can be
incorporated seamlessly.

CYCLOPS was conceived and implemented as a cloud service that can be deployed on
existing cloud platforms. Specifically, we focused on the Amazon Web Services (AWS)
environment, and produced an Amazon Machine Image (AMI) that supports both the content
server and the swarm monitor functionalities. We have released [9] to the research community
the CYCLOPS AMI, along with set-up and configuration instructions.

2.3.2 The CYCLOPS Swarm Monitor
Swarm monitoring in CYCLOPS is achieved using a set of components residing in the cloud,
called the On-line Feedback (OF) nodes. OF nodes connect to a live swarm, but neither
download nor upload content: they monitor all clients in the swarm and collect signaling
messages they exchange. Using this information, OF nodes construct snapshots in time that
characterize the health / performance of the swarm. In our particular implementation, these
snapshots are used to derive the instantaneous piece availability, which constitutes the
feedback signal fed to the CYCLOPS content server using a complementary protocol.

To ensure scalability (and seamless elasticity), we adopted a distributed design for OF
nodes, whereby new clients joining the swarm are assigned to OF node to balance load.
Accordingly, a swarm S is partitioned into N p non-overlapping sets, where N p is the
number of OF nodes in the system. Swarm partitioning is achieved using consistent hashing
[10]: each OF node is responsible for a fraction of the key-space, defined by the client ID
(e.g., IP address).

2.3.3 The CYCLOPS Content Server
The main objective of the content server is to minimize off-cloud bandwidth consumption
without running the risk of starving the swarm. Based on the feedback signal provided by the
swarm monitor, the content server feeds the swarm only when necessary, i.e., when piece

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 17/57

availability falls below a desirable threshold. To that end, in our design we adopted an
ON/OFF control strategy, whereby the content server operation oscillates between two states:
serving and idle.

When in the serving state, the content server dedicates its full uplink capacity to serve
missing pieces of content. By design, the server avoids injecting duplicate pieces into the
swarm. The rationale for doing so is that the swarm participants themselves can quickly
replicate pieces. All clients connected to the content server are induced to request the set of
missing pieces, which constitute the serving set maintained by the content server: this is
possible since the server masquerades as a set of virtual clients holding a fraction of all
available pieces. This serving set is partitioned into k non-overlapping subsets that are
announced as “available.” For instance, if the serving set consists of pieces {1,2,3,4} and k=2,
then k messages each announcing pieces {1,2} and {3,4}, respectively, will be sent to k users
that will eventually issue download requests. Once a piece has been served, it is removed
from the serving set, provided that the swarm monitor has confirmed the presence of the piece
in the swarm. When the server has finished injecting all missing pieces into the swarm, it
transitions to the idle state.

When in the idle state, the content server simply closes all connections to remote clients,
and refuses any incoming connection. The content server remains in the idle state until the
feedback signal triggers a transition to the serving state.

2.4 Experimental Method and Setup
In this section, we summarize the specifics of the CYCLOPS instance we have experimented
with, along with various details regarding deployment on a commercial cloud. We also
describe the three types of experiments we have conducted: two were in a controlled
environment (involving PlanetLab clients under our control), and the third was in the wild
(involving thousands of real Internet users accessing content we advertised and made
available).

BitTorrent-based Swarming: As we alluded to in Section 2.3, CYCLOPS can be instantiated
to work with any swarm-based content distribution protocol, supporting a specific set of
features. For experimental purposes, we created an instance of CYCLOPS that is compatible
with the popular BitTorrent (BT) client. Note that, in all our experiments, clients execute
unmodified BT code. This choice is partly motivated by the wide adoption of BT by Internet
users, as well as its adoption by many cloud-based content delivery services (including
Amazon S3 and many others [11]) as an underlying swarming protocol. The details of the BT
protocol and algorithms are not essential to understanding CYCLOPS, thus we refer interested
readers to [12] for a technical description of BT. Here we only mention that the coordinating
entity that maintains the list of clients in the swarm is called the tracker, and that the two
control messages used by BT to advertise pieces available at a client are the “have” and the
“bit field” messages: they indicate the availability at a client of a specific (single) piece, and
of a set of pieces, respectively [12].

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 18/57

In the remainder of this document, we use open-loop-BT to refer to an “open-loop”
BitTorrent swarm-assisted content delivery system, whereas we use CYCLOPS to refer to our
“feedback-controlled” BitTorrent swarm-assisted content delivery system.
Deployment Details: We used Amazon’s Elastic Computing Cloud (EC2) to host, on
separate virtual machines, the open-loop-BT content server (called the seed) and tracker, and
the CYCLOPS content server and swarm monitor. To mitigate the negative impacts on
networking performance due to shared resources (CPU and I/O) in a virtualized environment,
we used large EC2 instances, which were all located in a single US-based data center. Our
open-loop-BT and CYCLOPS content servers were well provisioned, with an upload capacity
of 2.4 Mbps. Note that, in our experiments, a single OF node proved to be sufficient to
monitor the entire swarm fed by CYCLOPS.
Flash Crowd Experiments: To emulate a flash crowd arrival process, we deployed a set of
clients on PlanetLab machines, whereby all clients initiate their requests as a result of a
centralized trigger: clients start downloading the content within 1 minute of that trigger signal.
Once a user is done downloading the content it continues to serve other clients until the end of
the experiment. We conducted our experiments using two flash crowd sizes of L=50 and
L=300 clients, respectively. In order to minimize the resource utilization of PlanetLab nodes,
we used a homogeneous configuration with an application level cap of 160 Kbps for the
client’s uplink capacity, which is the default setting for BT. The content size was set to 50
MB.

Waves of Arrivals Experiments: We synthesized extreme swarm dynamics on PlanetLab,
with the goal of studying CYCLOPS under stress: in practice, we created a scenario in which
availability problems would hinder the content distribution process, requiring CYCLOPS to
intervene more often than in a real swarm. The dynamics consisted of three successive bursts
of client arrivals: a first burst of 100 clients arrive in a 10-minute span and leave after
completing their download (within 50 minutes of arrival); a second burst of 100 clients join
the swarm just before the mass exodus of the first wave of users. This process is then repeated
for a third burst of arrivals. The interval between the mass exodus from one wave and the
burst of arrivals from the next wave is set up in such a way that there would not be sufficient
time for content pieces to propagate fully from the clients of one wave to the next (which
should cause the swarm monitor’s feedback signal to trigger the CYCLOPS content server to
rev up its contribution to the swarm). As before, the client’s uplink capacity was capped at
160 Kbps, and the content size was set to 50 MB.
Live Internet Experiments: We conducted experiments to evaluate our system under
realistic CDN operating conditions, including web-driven arrival and departure processes for
users drawn from a diverse set of ISPs and with diverse software settings. To do so, we
distributed a non-copyrighted movie packed in a 350MB file. We created two distinct torrent
meta-files (one for distribution using CYCLOPS and the other for distribution using open-loop-
BT), and we publicized both simultaneously on popular content search websites, including
isohunt, mininova and btjunkie. We took particular care in publicizing the two torrents exactly

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 19/57

on the day of their TV broadcast. In these experiments, both the CYCLOPS and the open-loop-
BT content servers had no cap on their uplink capacity (beyond what is possible through a
large EC2 instance), and needless to say, we had no control on the settings (or even the BT
variants) of the clients.

Performance Metrics: In all of our experiments, we considered two main performance
metrics. From the content server perspective, we measured the aggregate volume of data
uploaded during an experiment, i.e., the off-cloud bandwidth utilization. Since content servers
are under our control, we can measure their bandwidth utilization using local log files. From
the client side, we measured the content delivery times. For PlanetLab experiments, we did
that by collecting application-level logs from the clients. For live experiments, where we do
not have access to client logs, we measured the content delivery times using our swarm
monitor, which aggregates information provided by OF nodes. The accuracy of this approach
was validated using the PlanetLab experiments: we compared the download times computed
using individual log files (of PlanetLab clients) to those obtained from OF nodes, and verified
the match between the empirical cumulative distribution functions of download times for the
two methodologies. Furthermore, to assert the statistical significance of our results, our
PlanetLab experiments were performed five times for each configuration.

2.5 Experimental Results

2.5.1 Flash Crowd Experiments
End-users’ performance in downloading content is expressed in terms of individual download
times. Figure 3 reports the most important percentiles (25th, 50th and 75th) of the empirical
cumulative distribution function (ECDF) of download times.

Figure 3 : Flash Crowd: content download times (file size: 50MB).

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 20/57

As a general trend, we observe that the median download time of open-loop-BT swarms is
lower than that of CYCLOPS swarms, with the gap reduced in larger swarms. The reason lies in
the fact that an open-loop-BT seed keeps feeding the swarm during the whole experiment,
resulting in a larger fraction of users receiving data from the content server itself (which is
faster than the user), and hence the shorter content delivery time. Furthermore, we note that
aside from visible but relatively small variations, the download time for CYCLOPS clients was
less sensitive to the swarm size.

Table 2 : Flash Crowd: average server load (file size: 50MB)

 BT CYCLOPS
 L=50 12.2 1
 L=300 15.36 1

The above explanation is further confirmed by the results in Table 2, which reports the
average off-cloud resource utilization expressed in volume of data served by both the
CYCLOPS and the open-loop-BT content servers, normalized by content size. An open-loop-
BT seed injects the swarm with 10–15 times the size of the original content, whereas
CYCLOPS feeds the swarm only when necessary, which given the static nature of this
experiment is once. These results corroborate the intuition discussed in Section 2.2. A content
server that can gauge the marginal utility of its contribution to a swarm can settle in the
vicinity of an operating point in which an additional expense of off-cloud resources has a
marginal effect on the swarm performance.

2.5.2 Waves of Arrivals Experiments
Figure 4 shows the key percentiles of the ECDF for the delivery times experienced by clients
in the successive waves of arrivals. In this case, the difference between the delivery times
achieved by CYCLOPS and the open-loop-BT content servers is small: the median value of the
distribution indicates an advantage of roughly 15% in favor of the latter.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 21/57

Figure 4 : Waves of Arrivals: content download times (file size: 50MB).

Table 3 shows the average volume of data served by both schemes, as well as information on
traffic overhead (namely, volume of control messages involving off-cloud bandwidth
resources). For CYCLOPS, we show the aggregate overhead incurred by the content server and
the swarm monitor. For completeness, we report the feedback traffic exchanged between the
content server and OF node, noting that these messages are exchanged within the confines of
the cloud and hence do not entail additional costs.

The data in Table 3 corroborates our conclusion that CYCLOPS achieves low off-cloud
resource utilization, even when the system is artificially stressed by complex client dynamics.

Table 3 : Waves of Arrivals: server load & overhead (file size: 50MB)

 BT CYCLOPS

Normalized server load
39.86 1.5

 Outgoing overhead 55 KB 52 KB
 Incoming overhead 2560 KB 716 KB
 Feedback overhead – 145 KB

Next we examine the evolution in time of the feedback signal (namely, system-wide piece
availability) generated by the CYCLOPS swarm monitor and the content server state transitions
it triggers. Let M be the number of pieces into which a file is divided, and let I(i,t), i=1,…,M
be the indicator function for piece i at time t, i.e., I(i,t)=1 if there is at least one copy of piece i
at time t, otherwise I(i,t)=0. The availability feedback signal A(t) at time t is computed as:

 ()
()
M
ti,I

=tA ∑ (4)

Figure 5 shows the time-series for the swarm size, the availability feedback signal, and the
content server state transitions induced by this signal. It shows that as soon as the feedback
signal indicates piece starvation (i.e., availability is less than 1), the content server switches to
the serving state and feeds the swarm. Piece availability is zero when the swarm bootstraps,
and drops whenever clients holding the unique copy of a particular piece depart from the
system. The content server switches from the idle state to the serving state only when
necessary to restore piece availability to 1. Note that in this experiment we have purposefully
created an extreme case of swarm dynamics: in a real swarm, user behavior is not as
synchronous.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 22/57

Figure 5 : Waves of arrivals: availability over time.

2.5.3 Live Internet Experiments
In the set of experiments we present in this Section, we do not control the client arrival and
departure processes, but rather we let these processes reflect the popularity of the content we
forged and advertised. Furthermore, clients participating in our swarms exhibit realistic uplink
and downlink capacities, unlike our PlanetLab experiments in which all clients have the same
uplink capacity.

For CYCLOPS, out of a total of 7633 users we tracked, 3509 obtained the full content. All
other users departed before finishing the download process. For the open-loop-BT content
server, 2486 out of a total of 5044 users completed the content download. Figure 6 depicts the
instantaneous number of users for both swarms. In our experiments, after the transients of the
first few hours have subsided, the user arrival and departure rates within each swarm
equalized, with approximately 35-40 users joining each swarm per minute.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 23/57

Figure 6 : Live Experiment: Evolution of swarm size over time.

Figure 7 shows the box-plot of the content delivery times achieved by all users that were able
to complete the download. These results indicate that the median delivery time achieved by
both content servers is very similar. For the CYCLOPS content server, the ECDF indicates
longer tails: this is mainly due to a larger swarm size, which included clients with poor
Internet connectivity. From the end-users’ perspective, the difference in the download
performance when they are served by CYCLOPS or by open-loop-BT is negligible.

The off-cloud bandwidth utilization, the associated volume of data and related costs supported
by content servers underscore the superiority of CYCLOPS. Table 4 indicates that the CYCLOPS
content server served a total of 731.6 MB of content data, while the open-loop-BT seed
injected a whopping 133.03 GB of content data! Table 4 also reports the overhead traffic, as
defined in the previous section.
These results support our conclusion that the framework discussed in Section 2.2 and the
particular instance we presented in this work are viable candidates for real Internet content
distribution systems. Note that both experiments lasted 38 hours, and that the swarm sizes
allowed us to assume equivalent uplink capacity distributions for users in each torrent.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 24/57

Figure 7 : Live Experiment: content download times (file size: 357.5 MB).

Since we deployed our content servers on Amazon EC2 instances, we were able to quantify
the economic value of our proposed scheme: For the experiment we carried out, the total cost
(including overheads) for distributing the same content when using a legacy BT seed is
roughly 180 times higher that of a CYCLOPS content server.

Table 4 : Live Experiment: service statistics (file size: 357.5 MB)

 BT CYCLOPS
 Total number of users 2*5044 2*7633
observed in the swarm
Normalized server load 381.04 2.05

Outgoing overhead 6.5 MB 0.2 MB
Incoming overhead 160.8 MB 24.6 MB
2*Cost of delivery 2*$ 23.73 2*$ 0.13

2.6 Additional Considerations
We now discuss several points that complement the work presented. We start by suggesting
practical ideas to implement a content server with alternative objectives and feedback signals;
then we address the case for multiple content servers and conclude with a discussion of the
robustness of our framework against attackers aiming at thwarting the content distribution
process.

Dealing with alternative objectives and feedback signals: The framework proposed in
Section 2.2 is general enough to allow many possible combinations of objectives and
feedback signals. For example, an alternative objective may be to ensure some minimal level
of service based on a feedback signal regarding the average delivery time of content to
clients. The swarm monitor described in Section 2.3 can readily measure the average content
delivery times, using the same swarm signaling traffic we discussed earlier. Indeed, clients

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 25/57

advertise whenever they receive a new content piece, information that can be simply used to
compute the average download rate of the swarm. Based on this information, the content
server can choose the appropriate level of off-cloud bandwidth (i.e., the cost it incurs) to
complement the serving capacity λ of the swarm, with the constraint of remaining in the
vicinity of the quiescent operating point discussed in Section 2.2. With reference to Figure 1,
this approach corresponds to a content server selecting to contribute bandwidth resources that
move across the various operating regions obtained for different values of λ.

Dealing with alternative ways to collect feedback signals: The swarm monitor described in
Section 2.3 is achieved using a set of OF nodes that connect to all users. We show in
Section 2.5 that the cost of this solution, in terms of overheads, is not significant.
Nevertheless, maintaining many connections may pose some challenges. An alternative
solution is to use periodic sampling of the swarm state: The OF nodes, instead of connecting
to all the users in the swarm, periodically obtain a subset of users from the tracker and
connect temporarily to this subset to collect the information about pieces owned by the users.
Using sampling statistics, it is possible to infer system-wide piece availability, subject to
preset levels of confidence. Clearly, the larger the sampling set, the more precise the
availability information: in practice, approximating data availability may yield higher server
load, since pieces may not be detected even if they are in the swarm.
Dealing with multiple content servers: In the previous section, we conducted experiments in
which a single content server is deployed. There are many obvious reasons to consider a more
general scenario involving multiple content servers. For example, a CDN operator may wish
to use CYCLOPS on edge servers positioned in several locations so as to serve clients
efficiently: in this scenario, end-users might be directed to their geographically closest
CYCLOPS content server. Traffic locality to mitigate the impact on ISPs economics, calls for a
technique to create distinct swarms. This can be achieved with techniques proposed in the
literature without requiring any modification to the design of CYCLOPS. Alternatively,
multiple CYCLOPS servers could be combined to contribute to the same swarm. In this case,
such content servers would have to coordinate what content pieces they serve and when to
avoid inefficiencies. Our current implementation does not have provisions for avoiding the
overlap between the serving sets compiled by different content servers. That said; standard
distributed algorithms could be easily used to manage such situations for production-scale
systems.
Dealing with Cloud services cost models: In this work we have demonstrated the benefits, in
terms of bandwidth consumption, of our approach for Cloud-based content delivery. Since we
focused on a simple objective, i.e., to keep a swarm alive, CYCLOPS exhibits an intermittent
behavior: the system leaves the idle state only when the swarm risks starvation. Under this
operational mode, it is natural to question whether this behavior matches current cost models
that apply to resources rented in the Cloud. For example, the granularity for paying an
Amazon’s Elastic Computing Cloud (EC2) instance is one hour. As such, although bandwidth
resources are neither used nor payed for when CYCLOPS is in the idle state (probing traffic
aside), the virtual machine is payed independently of the bandwidth consumption.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 26/57

With respect to the above discussion, we stress that the experimental setting we used in
this work is not intended to be deployed in production. Ideally, our system is suitable for a
deployment with the Amazon S3 and its CDN extension (called CloudFront): in this case, our
approach would benefit the service operator (e.g. Amazon). Alternatively, our approach is
suitable for more elaborate scenarios in which multiple contents are distributed via multiple
instances of CYCLOPS that coexist in the same virtual machine. In such case, the unit cost of
the virtual machine can be amortized by having CYCLOPS content servers coordinate: when
one CYCLOPS instance is idle, another instance can be in the serving state, if necessary. Note
that such coordination is not trivial: the intermitted behavior of CYCLOPS is a result of swarm
dynamics, which cannot be controlled. It is outside the scope of this work to extend the
CYCLOPS architecture to cope with such additional complexity.
Dealing with adversarial workloads: Denial of Service attacks as well as other improper
behavior of end-users aiming to exploit swarm resources is a concern that has to be
considered when embracing a peer-assisted CDN solution such as ours. Although this is an
important problem to address, here we focus on deliberate attacks by a client (or a set of
colluding clients) targeting the specifics of our CYCLOPS framework. Other types of attacks
typical of P2P systems, such as Sybil or Eclipse attacks, can be solved using the techniques
already presented in the literature [13]. We recognize two possible adversarial exploits, where
the aim is to pollute the feedback signal computed by the CYCLOPS swarm monitor.
In the first, an adversary may seek to consume as much off-cloud bandwidth as possible. This
can be done by inducing the content server to detect piece starvation (when none truly exists),
thus causing the server to wastefully inject content. Since CYCLOPS swarm monitor tracks all
clients in a swarm, such an attack would require a colluding set of malicious users of a size
approximately equal to the whole swarm size, which can be safely assumed impractical.

In the second, a set of colluding users may engage in a DoS-like attack to hinder content
distribution, by inducing the content server to conclude that the swarm is healthy (when the
contrary is true). This causes starvation of legitimate clients. This can be solved by letting the
swarm monitor to compute the average download rate of the swarm (as explained before in
this Section). Based on this information, in case of content starvation, the swarm monitor may
trigger an alarm, indicating, for instance, the less replicated pieces.

2.7 Related work
Peer-Assistance: Peer assisted content distribution have been the subject of many recent
studies. Of these, the work of Huang, Wang, and Ross [14] could be seen as similar in nature
to the work presented here. In that work, the authors advocate the use of peer-assisted content
distribution by evaluating the potential gain from peer-assisted video distribution using real-
world traces of two large CDN companies, Akamai and Limelight (the underlying architecture
of both of which they characterized). Their approach uses the model in [15] to obtain bounds
on the server load and download times, should swarming among end-users be allowed. They
also quantify the potential reduction in ISP peering traffic, resulting from traffic localization.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 27/57

In the same vein, our work is based on an analytical model that gives key insights as to the
benefits of peer-assisted content distribution (although, our focus is on bulk as opposed to
video transfers). Beyond a “proof of concept” using a tractable mathematical formulation, we
go one step further by presenting practical feedback-control content injection policies that aim
to satisfy performance objectives while minimizing provider’s costs. Our implementation is
evaluated in realistic contexts, and our results go beyond a purely theoretic estimation of the
benefits of peer-assisted content distribution.
Frugal Seeding: To the best of our knowledge, the only work that has a similar objective to
ours – in terms of reducing the load/cost on a content source, albeit in a very different setting
– is Sanderson and Zappala’s work [16]. In that work, once the seed has determined a subset
of pieces that should be injected in a swarm, it will satisfy any number of requests for those
pieces. As a consequence, their technique does not offer the same level of control on the seed
workload as the policies we study in this work. Indeed, we observe that for experiments
carried out in similar settings, our content servers inject orders of magnitude less traffic than
what was documented in [16]. Additionally, our system does not require any parameter to be
empirically set.

Chen et al. [17] study the “Super-seeding” mode introduced by an alternative BT client to
help peers with slow Internet connections perform initial content seeding. The objectives of
“Super-seeding” are different from ours. Moreover, a number of problems due to multiple
peers using “Super-seeding” have been reported. The work in [18] proposes a “Smart seed”
policy, which advocates serving just one copy of each piece. Besides the fact that Smart seed
does not take into account dynamic scenarios, it requires the modification of clients, while our
system involves changes only to the server with no modification to the client.
Models and Bounds: The literature is rich with analytical models that dissect many aspects
of P2P content distribution. In [19] and [20], the authors derive lower bounds for the
minimum content distribution time of a swarm-based P2P application: we build upon those
works, but focus instead on the relation between the content server upload rate and the
download rate achieved by peers. The work in [21] belongs to the family of fluid models of
BitTorrent-like applications: however, in this model it is the number of peers (as opposed to
traffic) in the system that is taken as fluid. The authors in [21] develop a differential equation
for the fluid model, from which they determine the performance of the dynamic system. We
also model content replication in a dynamic setting, but instead consider the number of piece
replicas as the dynamic variable modeled using a Markov process.
Bandwidth Allocation in P2P Systems: While the study of alternative mechanisms that
improve the bandwidth allocation in P2P systems is orthogonal to our work, results from such
studies could clearly have positive implications on content server utilization. In [6], the
authors design a content distribution system with the objective of maximizing the download
rate of all participants in a managed swarm. This work stems from the observation that, in
steady state, a swarm can be in three different states: if the upload bandwidth allocated by
content servers is insufficient, peers will not be able to fill their uplink capacity and the

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 28/57

aggregate download rate will suffer; by increasing the amount of bandwidth awarded to a
single swarm, the content server can guide the system to operate in a regime where the uplink
capacity of peers is gradually filled, up to a point in which also the downlink capacity of all
peers is filled; at this point, server capacity can be diverted to other swarms. The system
design in [6] is based on a wire protocol that induces peer participation (using virtual
currency) to achieve a global system optimization. In our work, we focus on a different
objective: we try and address the question of whether it is possible to optimize the bandwidth
utilization by content servers, without negatively impacting the performance perceived by
clients. We note that the model we use in this work can also explain, though in more general
terms, the key intuition behind the Antfarm work [6].

The problem of devising efficient uplink allocation algorithms for swarm-based P2P bulk data
transfers is addressed in [22]. Instead of using empirically set parameters, as done in BT, to
determine the amount of uplink capacity dedicated to each remote connection, they cast
uplink allocation as a fractional knapsack problem, and design a simple heuristic utility
function to decide the amount of bandwidth a peer should dedicate to each remote connection.
The focus of their work is on a cooperative P2P setting, in which peers are assumed to fully
abide to the prescribed algorithms.

2.8 Conclusion
In this section of the deliverable, we have demonstrated that peer-assisted content distribution
could be leveraged to supplant as opposed to supplement the content provider’s resources for
purposes of efficient and scalable content distribution, without negatively impacting the
performance perceived by clients. Our approach is based on a feedback-controlled swarm
feeding mechanism, which we have modeled analytically and evaluated empirically using
CYCLOPS – a full-fledged service that we have implemented and deployed on the Amazon
EC2 cloud.
Our extensive experimental results – including the live distribution of content to thousands of
real Internet users – show that CYCLOPS achieves enormous cost savings for the provider (as
high as two orders of magnitude when compared to non-feedback-controlled BitTorrent-based
services) without noticeably impacting the performance perceived by end-users. By deploying
our servers on Amazon EC2 servers we were able to show that the mechanisms we developed
as part of this work have a clear impact on content distribution economics, including
significant reduction of costs for content providers, and much more efficient resource
utilization for content hosts and distributors.
Our on-going work is focused on exploring alternative objectives and alternative feedback
signaling processes in CYCLOPS, as well as extensions that take into account multiple
(possibly competing) content servers involved in the distribution of content from multiple
sources.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 29/57

3 CCN with Cooperative Caching
The main objective of the VIPEER project is to propose novel mechanisms to integrate

traffic engineering (i.e. guiding the traffic where resources are available) in the current video
streaming delivery system, so as to ameliorate the client QoE.

In this deliverable, we describe a cooperative caching policy based on CCN (Content
Centric Networking [26]) Paradigm ; the cooperative caching is performed within the ISP’s
routers, which can be considered as dCDN nodes.

CCN is potentially an efficient solution for streaming delivery thanks to its anycast nature
and proxy-like caching ability. However, the limited cache capacity on routers may degrade
the performance of the whole system. Therefore, intelligent storage management is necessary
to guarantee the system efficiency. Instead of using basic least recently used (LRU) or least
frequently used (LFU) caching policy, we propose a new cooperative caching policy between
content routers (CR). The aim of our cooperative caching is to reduce the amount of requests
served by the entities outside the ISP (e.g. CDN servers). As a result, the cooperative caching
limits CDN-to-ISP bandwidth utilization.

In the following, we first give the motivation of our work. Then we introduce the main
idea of the cooperative caching. Thereafter, we detail the augmented CCN protocol to realize
our novel caching policy. We also provide theoretical analysis to show the advantage our
proposition. Finally, the cooperative caching strategy is tested in both Catch-up TV and Video
on demand (VoD) system to highlight the benefit for ISP.

3.1 Introduction and Background

3.1.1 Context: Content Centric Networking
The deployment of Internet routers having caching capabilities (CR for Content or

Caching Router [23]) represents an opportunity to revisit the techniques that are currently
used to deliver content in the Internet. So far, the flaws of the Internet, in particular the poor
performances of communication links traversing several Autonomous Systems (AS) [24],
have been overcome by the deployment of large-scale CDN such as the Akamai network [25].
The recent works toward CCN [26] introduce new techniques, which allow routing queries
and data based on content name. These protocols enables the exploitation of the storage
resources of any machine in the network, in particular the CR. However, authors of CCN
suggest using a basic LRU policy for the cache management of every CR. The current paper
deals with a new caching policy for CR in order to build a cooperative in-network cache. This
objective requires taking into account:

• The distributed nature of this cooperative cache. Contrarily to the centralized
management of CDN, the envisioned network of CR is by nature distributed: every
CR must decide by itself whether a content that it routes should be cached. Moreover,
a claimed objective of CCN is to retain the simplicity and scalability of current

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 30/57

Internet protocols. Therefore, CRs can only use local information in order to take their
decision.

• The peering relationships between ASs. The equilibrium of the whole Internet depends
on the selfish actions of every AS. In the CCN perspective, an operator of AS becomes
a content provider through the CRs it manages. A rationale behavior is to cache in
priority the most expensive content, “textit-i.e.} when the path to the server storing
this content contains expensive transit inter-AS links.

• The small caching capacity of CRs. Studies show that video content will represent
more than 90% of the whole Internet traffic in a few years [27]. High-definition video
streams with bitrate in the order of megabits per seconds require storage capacity in
the order of gigabits. In comparison, the storage capacity of CR is expected to be small
(for example, only 36 gigabits in [23]).

3.1.2 Our Focus: ISP-friendly Time-shifted Streaming
We consider an ISP, which wants to minimize the cross-domain traffic related with streaming
delivery including Time-shifted TV and VoD service. A series of recent works has explored
CDN-based and peer-to-peer approaches for streaming delivery [27-35]. However, none of
these solutions focuses on the cost of content delivery for the ISP. In CDN-based systems, the
quality of the distribution is a function of the location of CDN servers, and of the efficiency of
the query redirection mechanism forwards the appropriate server. An ISP that does not
interact with a CDN provider is not able to manage the traffic for the end users located in its
AS. This lack of interaction is expensive for the ISP because every request from end user is
treated as one unique stream, resulting in larger incoming cross-domain traffic if the CDN is
located outside of the AS.
Peer-to-peer and peer-assisted architectures present also some weaknesses. Despite recent
efforts toward a better interaction between ISP and peer-to-peer applications [36], the
proposals for video streaming delivery ignore the network location of peers. Hence, it may
happen that the video is downloaded from one or several distant peers. In our previous works
[33], we have addressed the problem of guarantying that all past chunks are correctly kept in a
peer-to-peer system.

3.1.3 Our Proposal: Cooperative In-Network Caching
Our goal is to leverage on a set of deployed CRs to minimize the amount of queries for video
streams that are treated by servers outside the ISP network.

In this report, we propose to replace the LRU policy of CCN by a new cooperative policy,
with respect to the simplicity of CCN protocols. Our proposal is illustrated in Figure 8 using
an example offering time-shifted TV service. In the example, we assume that a given stream
is produced by a TV broadcaster. At a given time t, we consider that 21 chunks have been
produced (from 0 to 20). Each CR has a cache capacity of 10 chunks. According to the LRU
policy, the caches of the three CRs are filled by chunks -11 … 20}. At time t, two clients

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 31/57

request a time-shifted part of the stream, respectively from chunk 5 and 15. With the CCN
protocol, the latter request for chunk 15 is satisfied by the CR r1, but the request for chunk 5
has to be forwarded to the server. The lack of coordination among CR results in an inefficient
caching strategy with redundant data stored on adjacent CRs.

Figure 8 : Example of cooperative cache

Our proposal is that a CR does not cache all the chunks that it routes, but only part of them.
Every CR is associated with a label, which is a positive integer smaller than a fixed integer k.
Every CR uses the LRU policy only for chunks whose number modulo k is equal to its label.
In our example, we assume that k is equal to 3, and every CR ri is associated with label i.
Them, the CR r0 stores the chunks -0,3,6, … ,18, which correspond to the 10 last chunks
routed by r0 such that their chunk numbers modulo 3 are equal to 0. With this strategy, the
request for chunk 5 is not forwarded to the server, but directly satisfied by r2. In parallel, the
request for chunk 15 is no longer treated by r1, but r1 forwards the request to r0, which stores
this requested chunk. With this cooperative in-network caching strategy, machines in the AS
of the end users treat both requests.

3.1.4 Our Contributions: Algorithms and CCN Protocol
In this report, we do not describe all aspects of this proposal. In particular, we do not detail
how an ISP notifies all CRs that are under its control about the set of streams that have to be
stored for the purpose of a time-shifted service. This notification contains (i) the name of
these streams, (ii) the amount of storage space devoted for these streams, and (iii) the number
of different labels k. We focus on following contributions.
First, we give a theoretical focus on the initialization stage, the phase during which each CR
determines its label. A trivial implementation consists in a random choice. In previous works,
we have shown that significant gains can be obtained from a label assignment that takes into
account the network linkage among CRs [37]. However, the optimal assignment has been
shown to be NP-complete. We present in the current paper a distributed algorithm that allows
each CR to determine its label, this assignment of labels being not worse than ((3/2)k-5/2) of
the optimal assignment.

Second, we describe an augmented version of the CCN protocol that implements our
cooperative caching strategy. We show in particular that the protocol keeps the simplicity of

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 32/57

the original CCN protocol. We present the refinements that are necessary to implement the
cooperative caching.

Then, we use simplified network models to explain the advantages of our cooperative caching
policy on a non-cooperative one. In particular, we show that cooperative caching improves the
hit rate for middle popular videos.
Finally, we show some simulation results. We enhanced the open-source CCNx prototype by
integrating our cooperative caching policy. User behavior is simulated by synthetic traces
provided in [33] for time-shifted TV and statistics reported in [38]. We used an ISP topology
measured by Rocketfuel [39].
The performance improvement due to cooperative caching are impressive. For example,
assuming that the ISP reserves 1 gigabytes of cache for streaming delivery service, the
cooperative caching strategy is shown to perform 60% better than the LRU policy.

3.2 Network Model
We consider a network N consisting of a set of routers, and a set of bidirectional links
between these routers. We note by V the subset of routers that are CR (i.e. having caching
capacity); those routers are the dCDN nodes. We assume that the ISP is able to compute a
static “distance” dij between two CRs ri and rj. This “distance” represents the connectivity
between two CRs. Examples of such “distance” metrics are :

• the length of the shortest path joining ri to rj in N,

• the inverse of the capacity of routers on this path, or

• the average latency measured between these two routers.
The (k-1) CRs in V that are the nearest from the CR ri are expected to cooperate with ri. Here,
nearest means having the smallest distance. Our goal is to avoid that these CRs store the same
chunks. We note by N(i) this subset of CRs in V, and, by extension, N[i] is the set N (i)! ri .

In the following, we assume that non-CR routers are able to transmit the messages from one
CR to another without troubles. The CRs do not experience failures.

3.3 Initialization Stage
Each CR should initially determine its label. Our goal is to ensure that every CR is as close as
possible from all the labels that are different that its own label. We note by L(i) the k-1 CRs
having the k-1 other labels and that are collectively the closest from ri. The sum of distances
from a given CR ri to the CRs in L(i) is called the rainbow distance of ri, and it is noted di.
Formallydi = dijr j !L (i)

" . Determining the optimal assignment of labels, i.e. the assignment

such that the sum of all rainbow distances is minimal, is NP-hard [37].

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 33/57

To prove the performance ratio of our algorithm, we begin with the definition of lower bound.
Given an instance of the problem, it is possible to determine a lower bound solution by setting
that every CR with its k-1 closest CRs store collectively the k labels, formally L(i) = N(i) for
every CR ri. This obvious optimal assignment is impossible in many cases, but it gives a
lower bound. We call fractional distance, denoted bydi , the sum of the distances between a

CR ri and its k-1 nearest neighbors, sodi = r j !N [i]
dij" .

3.4 Distributed Algorithm
There are two rounds. First, each CR exchanges information with its 2-hop neighbors. Then,
each CR allocates labels on its neighbors and itself. For each CR ri the first round goes as
follows: 1) it collects from its k-1 nearest neighbors their (k-1) nearest neighbors, thus, every
CR knows all CRs that are at 2 hops in the (k-1)-nearest neighbor graph. 2) It sends to this 2-
hops neighborhood the fractional distance . 3), then it enters waiting mode. 4) It waits until
all two-hop neighbors having a fractional distance that is lower than emit a release
message. 5) It executes a Label Allocation Process (LAP), and then broadcasts a release
message. 6) When all two-hop neighbors have sent a release message, if ri is both marked as
saved and not assigned label, then it chooses the farthest label for itself.
The second round, namely LAP, is label allocation. The algorithm tests the condition that no
two CR rj and rj’ in N[i] can hold the same label. If N[i] satisfies the condition, i allocates
labels on every CR both in N[i] and holding no label, such that no j and j' hold the same label.
Then i marks itself as optimized. If N[i] does not satisfy the condition, i marks itself as saved.
Note that some of the saved CRs are labeled but others not.

Correctness and Analysis
Provided that the algorithm runs in a correct environment, i.e., there is neither faulty links nor
faulty nodes, it returns a solution satisfying the following conditions. First, it runs infinite
time. Second, each CR eventually holds a label. Third, there is no missing label in the system.
Theorem 1 The algorithm gives a valid solution in a correct environment.

Proof. The last condition is easily satisfied when the first CR (the CR possess the local
minimum rainbow cost) executes LAP. To show that the first and second conditions are also
tenable, we just need to prove that i will receive all release messages from its two-hop
neighbors in a finite time. If the algorithm does not terminate, it must be some nodes i and j
such that i never receives a release message from j, so i never executes LAP, and broadcasts
the release message. Yet, the fractional distance being a unique real number, there is always a
CR with a smallest distance, which can enter LAP and broadcast the release message. This
also leads to the fact that each CR will execute LAP. Together with the fact that the distance
of each CR is broadcasted only once, we conclude that no CR will be in waiting mode for
infinite time. Since the number of nodes is finite, the algorithm terminates in finite time;
thereafter each CR holds a label.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 34/57

Each CR executes LAP, and, as the distance function d gives a total order on nodes, no two
nodes within two hops are local minimal at the same time, so no two nodes within two hops
execute LAP at the same time.

Theorem 2 For any k ≥ 3, the distributed algorithm gives a solution no more than (3k/2-5/2)
times the lower bound.

Proof. For an optimized CR ri’, we know that . For a saved CR ri, there are two
cases: 1) the label on ri has been assigned by another CR, and this label coincides with the
label held by one of its k - 1 nearest neighbors, 2) two nodes in N(i) hold the same label.

In the first case, the label on ri has been assigned by an optimized CR ri’. It means that
, and that because ri’ executed LAP before ri. Assume that the label of ri is

1, and the neighbor of ri’ hosting label l is noted rj
l. Then the rainbow cost of ri can be

calculated as follows. Since is the nearest neighbor of ri, we have
.

In the second case, there must be an optimized CR ri’ within two hops from ri, such that
. Assume that rj1 and rj2 are the two nodes that prevent ri from entering the optimized state,
and . Without loss of generality, we can assume label 1 at j1. If ri chooses label h in
the second phase, then h ≠ 1, as rj1 is among the nearest neighbor of ri. According to the
algorithm, we have . After labels allocation is finished, ri and rj1 hold
different labels. Thus . Then the rainbow distance of ri can be calculated as
follows:

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 35/57

As for any k greater than 3, our algorithm gives a solution no more than
 times the lower bound.

3.5 Augmented CCR Protocol
We start by a quick summary of the main principles of CCN. Please refer to [26] for more
details. Then, we present the changes that we propose in order to implement our cooperative
caching strategy.

3.5.1 CCN in a Nutshell
In CCN, every content is identified by a hierarchical name like URL and divided into multiple
chunks. The content name plus a sequence number identify each chunk. When a provider
publishes the content, the CR connected with that provider floods an advertisement of the
content to adjacent CRs. A Forwarding Information Base (FIB) is established to redirect any
incoming interest (a.k.a. request) toward content provider. When an interest is forwarded
according to the FIB, an entry into the Pending Interest Table (PIT) is created to trace the
requesting interface, so that the content can be sent back along the reverse path of interest.
The content is then cached by the CRs on its forwarding path. If the content is requested
again, the replica in the Content Store (CS), or cache, is directly delivered by the CR.

3.5.2 New Tables in CCN
In order to implement our cooperative caching strategy, we require two new tables. First,
every CR ri maintains the information of its k-1 closest CRs in L(i) in a new table, namely
Collaborative Router Table (CRT). There are three fields in CRT of a CR: the label, the
identifier of the collaborative router and the interface. Thus, every CR knows where to
redirect an interest or forward a chunk. The second table added on the basic CR is the
Collaborative Content Store (CCS). In CCS, a CR keeps the names and the sequence numbers
of all the chunks that may be found in its collaborative cache. When an interest arrives, the
preference of the four prefix matches is CS match to CCS match to PIT match to FIB match.

3.5.3 Distribute Chunks in the Cooperative Cache
When a chunk c is sent back to consume an interest, a CR ri with label li, which receives c,
should take a decision (whether to cache it or not) based on li, on the identifier c of this chunk,
and the match result. We describe the action as follows:

• This chunk is handled by ri, that is c mod k = li. The CR ri adds c into its cache, and
removes the least recently used chunk. Then ri calculates a PIT match. If a PIT match
is found, it forwards the data to the interfaces indicated by the PIT; otherwise, the
process is finished.

• This chunk is not handled by ri, which is c mod k ≠ li. The CR ri first finds in its CRT

the router ri having the label lj that matches with the chunk c. Then ri sends the chunk c

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 36/57

to rj. Moreover, if ri finds a match in its PIT for this chunk, it also forwards c to the
requesters. Finally, ri adds c in the CCS Table, so that later interests requiring the same
chunk will be forwarded to rj, but no longer according to the FIB.

In this scheme, each data packet should carry a random nonce to prevent broadcast storm.
When a duplicated packet with the same nonce is received, it should be immediately
discarded.

3.5.4 CCS Consistency
At every time, the CS of a given CR ri should be consistent with all the CCS tables of all CRs
that consider ri among its closest CR. In particular, when an entry of the CS ri is discarded by
the caching policy, the corresponding entry in the CCS of a CR rj with should also
be deleted; otherwise interests for the eliminated content may be lost in the forwarding
process. For example, if rj receives an interest requiring chunk c, it finds the CCS match point
to ri. Assume that chunk c in ri has been discarded. The CR ri forwards the interest following
the FIB entry. If rj is an intermediate CR between ri and the corresponding server, the interest
will be regarded as a duplicated one, and discarded by rj. Therefore, the interest for chunk c is
lost. We should remind that the lost interest can be recognized as a duplicated one because
every interest is given a random nonce when it is generated.

To both maintain consistency and avoid increasing control messages, we use piggyback
interest (p-interest) to carry the control information. A CR ri with label li acts as follows when
an interest for chunk c is received:

• The requested chunk c is handled by ri, that is c mod k = li. The CR ri first calculates
the CS match. If a CS match is found, it sends back the data directly. Otherwise, if a
PIT entry is found, it adds the requiring face into the pending list. If neither CS match
nor PIT match is found, ri changes the interest into a p-interest; it generates a new
nonce for the p-interest, and forwards this p-interest according to FIB entry.

• The requested chunk c is not handled by ri, that is c mod k ≠ li, and the interest is a p-
interest. The CR ri needs to determine whether the CR ri indicated in the p-interest is
in the CRT of ri. When rj is not the relative collaborative router, ri executes normal
process. Otherwise, ri should eliminate the CCS for the chunk required in the interest,
and then adds the requiring face in its PIT. Finally, ri forwards the interest according
to the FIB, even if PIT already existed. The final step ensures that the interest arrives
at a provider.

• The requested chunk c is not handled by ri, that is c mod k ≠ li, and the interest is not a
p-interest. The CR ri just executes the normal CCN process (collaborative CS match is
preferred than PIT match, and PIT match is preferred than FIB match).

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 37/57

3.6 Analysis of Cooperative Cache
We now use some network models in order to highlight the advantages provided by this
cooperative caching policy. Although the analyzed structures are simple, the real network can
be seen as a combination of them. The performances of LRU policy have been previously
studied in [18,19]. We extend our analysis based on the results presented in [40]. The first
model contains several caches directly connected with a server. The two approaches are
shown in Figure 9 & Figure 10:

Figure 9 : Individual caches connected to a server

Figure 10 : Cooperative caches connected to a server

In Figure 9, k homogeneous caches with cache size C are connected with the server. Each
cache receives requests for segment i with the same request rate λi. If i is not stored in the
cache, a cache miss happens. The cache miss rate for segment i is denoted as λi

0. Following
the results in [40], the total cache miss rate of the k caches is , where
is the maximum inter-arrival time between two adjacent cache hits for segment i.

In Figure 10, the k homogeneous caches work cooperatively. Each cache stores distinct
chunks and form a cooperative group with cache size . Although the cache replacement
policy of the cooperative group is not exactly LRU, we approximate the group as a single
cache using LRU policy. The cache miss rate generated by the cooperative group is denoted
as .

Theorem The cooperative group caching achieves at least the same performances as the
individual caches.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 38/57

Proof. We need to prove that for any and . We begin our proof
from the fact that the function is continuous and monotone decreasing. The
function is also continuous and monotone decreasing since

 is the sum of . According to [40], and can be calculated by the following two
equations.

Minus equation (2) by equation (1), then we have:

Since and , we can obtain:

As is monotone decreasing, we conclude that Because is also monotone
decreasing, we know that:

Multiply both sides of equation (5) by , the proof follows

Another structure is the tandem of k caches shown in Figure 11. The request rate from client
for i at each cache is still identical and denoted as λi. Instead of forwarding the missed stream
directly to the server, the missed stream is passed to the next hop cache in the direction of the
server. Since only the kth cache is connected with the server, the missed stream λ0

ki of the
cache k is the missed stream of the multi-cache system. Therefore, the breakthrough point is
to find the expression of λ0

ki. Although the structure is simple, it is not trivial to deduce λ0
ki,

since the exact distribution function of the missed stream contains infinitely many terms
[40]. Consequently, we cannot deduce the exact miss rate for these objects because of the
computational complexity. The only knowledge we have is that the incoming request rate at
the kth cache is , where l is a constant and . Let us regard the miss rate

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 39/57

as a function f0
ki of λi, then we have . Recall that the miss rate of

cooperative caching is .

Figure 11 : Caches in tandem

Theorem The maximum miss rate of cooperative caching is less than the tandem of caches
working individually.

Proof. We need to prove that, for any and , we have max(f0

ki) ≤ max(fi').
The value of can be calculated as follows:

Instead of directly comparing with , we use another variable and setup the equation
below:

Since k ≥ l, combining equation (6) and (7) we have . Applying the same method in
the proof of theorem 1 on equation (7) and (2), we can obtain that . Thus, we have

.
Let the first deviation of f0

ki = 0, that is:

then we have . Since the second derivative of f0

ki is less than zero, we know that
max . As the same reason, we have max . Since , we
conclude that max(f0

ki) ≥ max(f'i).

Please note that, the exponential part of f'i decreases more rapidly than the same part of f0

ki,
which means that an approach like ours is expected to have at least the same performances for
highly popular videos, and better performances for middle popular videos. As seen in the next
Section, experimental results confirm this theoretical analysis.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 40/57

In conclusion, both tandem and individual models are less efficient than a cooperative policy.
Our approach, which combines cooperative and tandem approaches, is hence expected to
outperform the classic CCN policy.

3.7 Experimental Results

3.7.1 Simulations on Time-shifted TV
The goal of these simulations is to evaluate the benefits one can expect from the cooperative
in-network caching strategy for the time-shifted TV service. We develop our simulator over
OMNET++, a simulation framework for communication networks.

3.7.2 Simulation Setup
To build a typical ISP network, we use the real backbone topology measured by Rocketfuel
[39]. We choose 87 routers, 5 point of presences (POPs) and 161 bidirectional links with
latencies from the AS of European Backbone (Ebone). Every POP is connected with one
server, which stores all the produced chunks. Chunks are pushed into servers from 6 TV
providers with different popularities. We deploy 200 clients uniformly on the access routers
locating at the edge of the topology. We reserve 1 gigabytes in each CR to cache time-shifted
TV streaming. The basic data unit of the TV streaming is a chunk, which contains the
streaming for 1 minute playback. One new chunk is produced every simulation minute by
each TV provider. We assume the streaming playback rate is 1 megabits per second, so that
the size of one chunk is 7.5 mega-Bytes. Therefore the cache of a CR can store 130 chunks,
approximately two hours of video.

We use the same synthetic model as [33] for modeling the behavior of users of time-shifted
services. This model is based on two measurement studies conducted in 2008 and 2009
[42,43]. This model includes that a TV stream is divided into programs, associated with a
genre. The popularity of programs decreases with time. Moreover, the number of clients
varies following a given distribution. In our case, according to different hours in a day, the
number of activated clients ranges from 20 to 180. Every client get assigned a role: half of
the clients are surfers (watch a same program during 1 or 2 chunks before to switch to another
program), 40% of them are viewers (switch after a duration uniformly chosen between 2 and
60 minutes), and only 10% are leavers (stay on a program during a time comprised between
60 and 1000 minutes).

We run our simulation for 9,000 minutes, i.e. about one week. Since six TV streams are in the
system, 54,000 chunks are produced during the simulation. We measure in particular:

• The caching diversity of the policy by counting the number of distinct chunks that is

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 41/57

stored in the network. The more distinct chunks are stored in the system; the better is
the cooperative caching system. With 87 CRs having each a maximum caching
capacity of 130 chunks, the maximal caching diversity is 11,310 chunks.

• The ISP-friendliness of the policy by measuring the number of requests that are treated
by servers outside the network. The lesser is the number of requests, the friendlier is
the caching policy.

3.7.3 Results Analysis
We first investigate the impact of k on the performance of the system. We change k from 1 to
6, where k = 1 is exactly the basic LRU policy. In Figure 12, we show the caching diversity at
the end of the simulation. For any k > 2, the system using collaborative cache can keep at
least 700 distinct chunks more than the system using basic LRU. The number of distinct
chunks keeps increasing although it grows slower after k = 4. When k = 6, the caching
diversity reaches 4,500 chunks, that is, the collaborative cache with k = 6 outperforms the
basic LRU by almost 60%. As can be expected, the cooperative caching policy increases the
caching diversity by avoiding redundant chunk caching.

Figure 12 : Caching diversity: the number of distinct chunks stored in the set of CRs when the number of

labels k varies

We demonstrate the efficiency of our proposal in Figure 13, where we compare the ISP-
friendliness of the basic LRU policy implemented in CCN to our cooperative caching strategy

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 42/57

with k = 6. In average, every server should upload 20.56 chunks by minute with the basic
LRU system, and only 8.92 in our proposal. In other words, the ISP can expect a reduction of
around 60% of the cross-domain traffic.

Moreover, we observe that the workload in basic LRU system is not well balanced, with
servers 3 and 5 exhibiting two times more traffic than server 4. The workload depends on the
network topology: less CRs locate around the POP which is connected with server 4, so fewer
requests for the old chunks, which no longer exist in the cache, arrive at server 4. The reverse
situation, which happens on server 3 and 5 causes the unbalance of the workload between
servers. However, in collaborative cache system, every server sustains approximately the
same number of requests. Since most of the chunks for shifted streaming are kept in the
collaborative cache, a majority of the requests redirected to servers are the requests for live
streaming.

To further study the popularity of chunks stored in the system, we investigate the time interval
between last two requests for each cached chunk. This indicates the volatility of content in the
cache: the smaller are the time intervals, the more frequent are the read-write operations on
the cache. In average, the basic LRU policy has a more intensive usage of the cache. We
show the Cumulative Distribution Function of the number of chunks with regard to their time
interval in Figure 14. A point at (40, 0.85) means that 85% of the chunks have been accessed
at most 40 minutes ago. As can be expected, our cooperative caching policy produces a less
intensive caching strategy. On one hand, it means that operations on the disks are less
frequent. On the other hand, the content would have higher probability to be removed if ISP
were unable to reserve a certain storage space in the cache because unpopular chunks should
be replaced by other data.

Figure 13 : ISP-friendliness: the number of times each server located is accessed. The smaller is the bar,

the more ISP-friendly is the caching strategy

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 43/57

To further study the popularity of chunks stored in the system, we investigate the time interval
between last two requests for each cached chunk. This indicates the volatility of content in the
cache: the smaller are the time intervals, the more frequent are the read-write operations on
the cache. In average, the basic LRU policy has a more intensive usage of the cache. We
show the Cumulative Distribution Function of the number of chunks with regard to their time
interval in Figure 14. A point at (40, 0.85) means that 85% of the chunks have been accessed
at most 40 minutes ago. As can be expected, our cooperative caching policy produces a less
intensive caching strategy. On one hand, it means that operations on the disks are less
frequent. On the other hand, the content would have higher probability to be removed if ISP
were unable to reserve a certain storage space in the cache because unpopular chunks should
be replaced by other data.

Figure 14 : Cumulative Distribution Function. The y axis is the ration of chunks; the x axis is the time

elapsed between two consecutive accesses on a CR.

Finally, in Table 5, we compare the average response time of each request, that is, the round
trip time between the sending of a request and the receiving of the corresponding chunk. The
response time in collaborative cache is just 40ms more than that in the basic LRU. Thus, our
collaborative cache does not cause any significant degradation of the Quality of Experience.

Table 5 : Comparison of Response Time and Requested Time Interval

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 44/57

3.7.4 Simulations on VoD service
Different from the simulation on time-shifted TV, we implement our cooperative caching
policy into the open-source CCNx code and test the augmented daemon on VoD service. For
the portability of the program, we have not changed the original cache organization. Instead,
we mark the undesirable chunks as stale, so that the chunks with c mod k ≠ l are eliminated
from the cache right after it is forwarded. The label of each router is assigned and published at
the beginning of the simulation.

Simulation Setup
Our modified CCNx prototype is deployed on 40 machines with dual 2.70 GHz Pentium
processor and 4 GB RAM. Each machine uses Ubuntu 10.04 system and is connected to a
switch via 100 Mb/s Ethernet card. The ISP network is still emulated according to Ebone.
Every machine works as a router in the network. The routers are interconnected by 80
bidirectional links with negligible delays. Among the 40 routers, 20 of them act as edge
routers, with the responsibility to emit the requests from 1000 end users, and 3 routers run as
point of presences (POPs). Servers are assumed to be just near these POP routers.

Initially, servers publish all the chunks for the 500 available videos. The size of each video
varies uniformly from 60 to 120 chunks. We limit the cache capacity of every router to 100
chunks.
We model the user behavior following the statistic conducted in [38]. More precisely, the
number of users to activate and the daily access pattern are based on the formulas given in
[38]. Once a client is activated, it chooses a video based on a Zipf’s law with the skew factor
equal to 1. The duration for each watching session is as follows: 50% of sessions end in 10
minutes, 75% of them stop in 25 minute, 90% of them terminated in 50 minutes, and the rest
sessions last until the end of the video. We run our simulation for 10,000 minutes, i.e. about
one week. Besides the overall chunk diversity and ISP-friendliness, we examine the result for
the per-video caching diversity, which is the percentage of chunks (including replicas)
belonging to each video that are cached. The increment of chunks of middle popular videos
alleviates the server load since more than 40% of requests ask for the 10 most popular videos.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 45/57

Results Analysis

Figure 15 : Caching diversity varies with k

In Figure 15, we show the caching diversity at the end of the simulation. Different from the
result obtained in time shifted TV system, the diversity augments regularly with the increment
of k. When k = 6, the caching diversity reaches 1,050 chunks, that is, the cooperative cache
with k = 6 is almost 1.5 times the diversity of the basic LRU policy. As can be expected, the
cooperative caching policy increases the caching diversity by avoiding redundant chunk
caching.

Figure 16 : Chunk distribution of the 10 films

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 46/57

Then we study the per-video caching diversity. We focus on the influence of cooperative
caching on the 10 most popular videos that attract a lot of requests. As seen in Figure 16,
while the number of stored chunks from the two most popular videos decreases, while it
increases from the third to the eighth most popular videos. That is, the aforementioned higher
diversity focuses on the chunks from these middle-popular videos, frequently accessed, but
not necessarily considered as blockbusters. For the long tail, as shown for the ninth and tenth
most popular video, the caching policies have approximately the same behavior. These
experimental results are consistent with our theoretical analysis in the previous section.

Finally, we highlight the efficiency of our proposal in Figure 17, where we compare the ISP-
friendliness of the basic LRU policy implemented in CCN to our cooperative caching
strategy. In average, every server should upload about 150 chunks by minute with the basic
LRU system, and only 52 chunks in our proposal with k=6. In other words, the ISP can expect
a reduction of more than 60% of the cross-domain traffic.

Figure 17 : Number of times each server is accessed

3.8 Conclusion
This section of the deliverable focuses on the impact of a novel cooperative caching policy on
the benefit of an ISP. The ISP is supposed to use CCN infrastructure to deliver video streams.
In the basic CCN design, the simple LRU or LFU policy is propose to manage the storage
space. We show by our experimental results that our cooperative caching strategy can reduce
60% the requests that go out of the ISP comparing with the original CCN. So that the

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 47/57

proposed cooperative caching significantly save the cost for the ISP offering both time shifted
TV and VoD service.

Our future work is to further improve the augmented CCNx daemon, try to integrate different
caching policy (i.e. LFU, k-LRU) into our cooperative caching and compare the performance.
On the other hand, deeper theoretical study on the multi-caching system is also interesting.

4 Real Datasets for prefetching and simulation
The peer-assisted network has to optimize the offer of peer-cached contents to face the
demand. In the previous sections, we discussed the CYCLOPS approach, where a server feeds
peers with contents, and where a monitoring mechanism controls its bandwidth contribution
to the peers so as to minimize a cost without sacrificing performance.
We also propose a CCN+ infrastructure to deliver video streams and a cooperative caching
approach. The preliminary experimental results are encouraging. We plan to integrate
different caching replacement policies such as LRU, k-LRU.

For both approaches, we may introduce content-oriented caching strategies. For the first one,
a question could be how to feed the swarm, which contents choose? For the second one, we
may envision hybrid caching policies combining passive caching policies with prefetching
strategies. LRU-like passive replacements are efficient to manage contents [44], especially
popular ones. But for less popular contents, external access to the server is more frequently
needed. A solution to address this issue is the prefetching of contents in extra caches [45-47].

We are indeed working on techniques to pre-load in the peer-assisted network the contents
that are to be downloaded, and then reduce the requests that go out of the ISP domain.

In order to provide prefetching capabilities, we need to analyze users’ behavior. The richer the
learning dataset is, the more accurate the predictions of future behavior will be. Such rich
dataset will allow us to compute similarities between VoDs, predict future downloads and
then feed extra-caches.

We describe in this section the datasets we plan to use to compute prefetching on the one
hand, and to test our peer-assisted networks on the other.

4.1 A real VoD dataset
For CCN simulations described in the previous section, we model the user behavior following
the statistic conducted in [38]. We have now the opportunity to test on a real dataset. A
French ISP provides us an extraction of the VoD downloading history from a regional zone.
The commercial VoD service is legal and comes with the ISP offering.

Let DataISP denote this dataset. For each download, the logs give the timestamp, the user ID
and the film ID (Figure 18). 8,935 customers downloaded 108,108 VoD during 6 weeks
(February-March 2010). 5,777 different movies were requested.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 48/57

1265385351 c3794 f5729
1265385362 c4058 f3344
1265385384 c1128 f1971
1265385404 c4687 f121

1265385432 c1483 f2390

Figure 18 : ISP VoD downloading logs: timestamp, user ID, film ID

We detail below some aspects of the data.

Downloaders’ profiles :

Figure 19 and Figure 20 depict the downloading behavior during the weeks and the week-
ends. With no surprise, we see low activity during the night (1h-7h), with a slow increase
during the day and a peak around 21h. This peak is higher for a mean weekday evening than
for a mean week-end evening. But we observe the highest peaks on Saturday and Friday
evenings. During the week-end afternoons, especially on Sundays, the graph shows more
activity than during the week.

Figure 19 : Downloads during the week-end or the week.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 49/57

Figure 20 : Downloads each different day.

We found 3 classes of downloaders: the “Top” ones who request 40 to 230 movies per month.
5.6% of all the users are “Top” users. The mean number of downloads is 66 movies per
month, or something like 2 movies per day.

Figure 21 : The “Top” users who download the most.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 50/57

Figure 22 : Downloading profile of users who downloaded only once during the 6 weeks of DataISP.

Figure 21 and Figure 22 compare the high consumers of VoD and the ones who downloaded
only once in our dataset. The bahavior is the same as the global one described above. Only a
remarquable difference, in addition to the volume, is that the “Top” clients download
significatively more in the afternoon.

Figure 23 : Comparison between the downloading profiles.

On the same scale of the Figure 23, we observed that “single download” users are very
insignificant in volume of data requested. Note that 64% of the films they requested are very
popular films, only 2% of the films they resquested are films downloaded once.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 51/57

4.2 A dataset for prefetching
Let DataWEB denote a dataset that comes from Flixster2, a social web site where people share
their opinion about movies. We collected in july 2009 data where 201,107 users annotated
38,656 different movies with 6,028,491 rates: 0 if they dislike; 5 if they like it.
DataWEB is very interesting to study recommendation mechanisms. As the users rate all the
movies, we can conceive and test algorithms to predict rates on movies. Traditionaly, such
ratings are used by collaborative filtering methods [48]. Similarities of users are computed
based on their rating behavior (e.g. Pearson correlation). Then rates are predicted on unrated
movies, given the rates provided by similar users.

Recommendation domain is very well studied, and the recent NetFlix challenge3 has brought
very efficient methods. But there are still scientific issues, especially regarding the non-
popular contents for which the precision/recall highly decreases. Such movies indeed are not
rated enough for an algorithm to build relevant similarities between users. We are interested
in this long tail issue (French RNTI revue chapter to be published soon).
We will propose later in the project a method to fill the extra caches dedicated to prefetching.
4.3 Merging the datasets

4.3.1 Popularity classification
In both DataISP and DataWEB, 65% of the requests concern the most 500 popular movies. The
VoD downloaded only once during the 6 weeks of logs represent 25% of all the requests in
DataISP. Similarly, 30% of the movies have been rated once in DataWEB. Note that the volume
of downloads of films requested once is negligible comparing with the popular ones (cf.
Figure 24). We also observed similar power law distributions in movies popularity in both
DataISP and DataWEB (see Figure 24).

2 http://www.flixster.com
3 Netflix, Inc. organized a challenge and offered $1,000,000 to the winners who achieved a gain of 10% accuracy (RMSE measure)
in 2009.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 52/57

Figure 24 : Power distribution of ratings in DataWEB.

Figure 25 : DataISP types of films: popular films and films downloaded once. The “Mid-popular” films are

the delta between the global red line and the blue one.

Let us consider the Popularity classification in 3 classes: “Top 500” films, “Mid-popular” and
“Single view” films. This classification fits both real datasets.

4.3.2 Merging method and resulting dataset
As prefetching is facilitated by work on DataWEB, and both datasets are very similar regarding
the popularity distribution and classes of movies, we propose to merge the 2 sets. The idea is
to generate downloading logs from the rated movies from DataWEB with the downloading
behavior observed in DataISP. The matching of movies is based on their popularity. In the first

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 53/57

case, the popularity is the relative number of ratings, whereas in the second case, the
popularity is the relative number of downloads (cf. Figure 26).

Figure 26 : Popularity merging between ISP downloaded films and Web annotated films.

For each movie from DataWEB, we find the film from DataISP with the closest popularity. In
case of conflict the correspondance is chosen randomly. In the next step, downloading history
is assigned. As several ISP films may be attached to one Web film, we introduce temporal
disorder to delay concomitant requests (random delay in [-20s, 20s]).
As a result, we get a new dataset DataISP+WEB where, during 6 weeks, users download movies
for which we know whether they were appreciated or not. As a matter of fact, this new dataset
“only” contains 144,296 requests (to be compared with the 6,000,000 entries of DataWEB,
Figure 27). The 38,500 web films now match the 5,800, but 30% of the 40,000 are films with
only one rate, generating only one line in the final log file. The first 500 web top films
generate the same amount of logs, leaving 12,300 web films to be matched with 3,800 mid-
popular films with quite low download volume. As we see in the Figure 28, the generated data
shows similar downloading behavior than the original one shown in Figure 19.

 Nb users Nb films nb downloads nb ratings

DataISP 8,935 5,777 108,108
DataWEB 201,107 38,656 6,028,491

DataISP+WEB 201,107 38,656 144,296 6,028,491
Figure 27 : Two real datasets and our generated dataset.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 54/57

Figure 28 : Weekday and week-end downloads in the generated dataset.

4.4 Conclusion
In the previous section about CCN, the simulations were run on simulated data, reproducing
about one week with 1,000 end users and 500 available videos (DataSIM). It would be
interesting to test on DataISP and challenge a larger volume of data, with more popular movies
(500 instead of 10).

DataSIM simulates more than the downloading. It introduces the viewing duration of content.
Unfortunately, the real datasets described in this document do not contain this information.
But we may for example consider that a bad rate in DataISP+WEB means a short viewing
duration.

We are aware that the DataISP+WEB we using are not easily obtained. Hopefully, future VoD
services will be enhanced with Web2.0 functionalities, which automatically yield this type of
logs.
In the next steps of the project, we will propose prefetchning mechanisms, and simulate the
datasets described in this document.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 55/57

References

[1] “http://www.akamai.com.”
[2] “http://aws.amazon.com.”
[3] “http://www.limelightnetworks.com.”
[4] “http://www.bittorrent.com.”
[5] F. Bin, D.-M. Chiu, and J. C. Lui, “Stochastic analysis and file availability enhancement

for bt-like file sharing systems,” in Proc. of IEEE IWQoS, 2006.
[6] R. S. Peterson and E. G. Sirer, “Antfarm: Efficient content distribution with managed

swarms,” in Proc. of USENIX NSDI, 2009.
[7] D. R. Choffnes and F. E. Bustamante, “Taming the torrent: A practical approach to

reducing cross-isp traffic in p2p systems,” in Proc. of ACM SIGCOMM, 2008.
[8] R. Cuevas, N. Laoutaris, X. Yang, G. Siganos, and P. Rodriguez, “Deep diving into

bittorrent locality,” arxiv.org/abs/0907.3874, Telefonica Research, Tech. Rep., 2009.
[9] “http://www.eurecom.fr/ albanese/pcdn.html.”
[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent

hashing and random trees: distributed caching protocols for relieving hot spots on the
world wide web,” in Proc. of ACM STOC, 1997.

[11] “http://en.wikipedia.org/wiki/BitTorrent\s\do5(()protocol).”
[12] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke are enough,” in

Proc. of ACM IMC, 2006.
[13] M. Steiner, E. W. Biersack, and T. En-Najjary, “Exploiting kad: Possible uses and

misuses,” Computer Communication Review, vol. 37, no. 5, 2007.
[14] C. Huang, J. Li, A. Wang, and K. Ross, “Understanding hybrid cdn-p2p: Why limelight

needs its own red swoosh,” in Proc. of ACM NOSSDAV, 2008.
[15] C. Huang, J. Li, and K. Ross, “Can internet vod be profitable? ” in Proc. of ACM

SIGCOMM, 2007.
[16] B. Sanderson and D. Zappala, “Reducing source load in bittorrent,” in Proc. of IEEE

ICCCN, 2009.
[17] Z. Chen, Y. Chen, C. Lin, V. Nivargi, and P. Cao, “Experimental analysis of super-

seeding in bittorrent,” in Proc. of IEEE ICC, 2008.
[18] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and improving a

bittorrent networks performance mechanisms,” in Proc. of IEEE INFOCOM, 2006.
[19] R. Kumar and K. Ross, “Optimal Peer-Assisted File Distribution: Single and Multi-Class

Problems,” in Proc. of IEEE HOTWEB, 2006.
[20] R. Sweha, A. Bestavros, and J. Byers, “Angels – in-network support for minimum

distribution time in p2p overlays,” Boston University, Tech. Rep. BUCS-TR-2009-003,
2009.

[21] D. Qiu and R. Srikant, “Modeling and performance analysis of bittorrent-like peer-to-
peer networks,” in Proc. of ACM SIGCOMM, 2004.

[22] N. Laoutaris, D. Carra, and P. Michardi, “Uplink allocation beyond choke/unchoke or
how to divide and conquer best,” in Proc. of ACM CONEXT, 2008.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 56/57

[23] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric networking," in
International Conference on Energy-Effcient Computing and Networking, 2010.

[24] T. Leighton, “Improving performance on the internet," Communications of the ACM,
vol. 52, no. 2, pp. 44-51, 2009.

[25] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for high-
performance internet applications," ACM SIGOPS Operating Systems Review, vol. 44,
no. 3, pp. 2-19, 2010.

[26] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, “Networking named content," in Proc. of the Int'l Conf on emerging
networking expe. and tech. (CoNEXT), 2009.

[27] The Cisco Visual Networking (VNI) Forecast 2009-2014, Cisco, June 2010. 18
[28] J. Zhuo, J. Li, G. Wu, and S. Xu, “E_cient cache placement scheme for clustered time-

shifted TV servers," IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp.
1947-1955, November 2008.

[29] T.Wauters, W. de Meerssche, F. Turch, B. Dhoedt, P.Demeester, T. Caenegem, and
E.Six, “Co-operative proxy caching algorithms for time-shifted iptv services," in IEEE
Computer Society Washington, 2006.

[30] J.-C. Zhuo, J. Li, G. Wu, and L.-Y. Zhu, “A novel data replication and placement scheme
for time-shifted tv cluster," in International Conference on Computer Science and
Software Engineering, 2008.

[31] F. V. Hecht, T. Bocek, C. Morariu, D. Hausheer, and B. Stiller, “LiveShift: Peer-to-Peer
Live Streaming with Distributed Time-Shifting," in Proc. Of 8th Int. P2P Conf., 2008,
pp. 187-188.

[32] D. Gallo, C. Miers, V. Coroama, T. Carvalho, V. Souza, and P. Karlsson, “A Multimedia
Delivery Architecture for IPTV with P2P-Based Time-Shift Support," in Proc. of 6th
IEEE CCNC, 2009, pp. 1-2.

[33] Y. Liu and G. Simon, “Distributed Delivery System for Time-Shifted Streaming
System," in 35th IEEE Conf. on Local Computer Networks (LCN), 2010.

[34] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for high-
performance internet applications," SIGOPS Oper. Syst. Rev., vol. 44, pp. 2-19, August
2010.

[35] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming systems," Peer-
to-Peer Networking and Applications, vol. 1, no. 1, 2008.

[36] H. Xie, A. Krishnamurthy, A. Silberschatz, and Y. Yang, “P4P: Explicit
Communications for Cooperative Control Between P2P and Network Providers,"
P4PWG Whitepaper, May, 2008.

[37] Y. Chen, J. Leblet, and G. Simon, “On reducing the cross-domain traffic of box-powered
cdn," in Proc. of IEEE ICCCN, 2009.

[38] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding user behavior in large-
scale video-on-demand systems," SIGOPS Oper. Syst. Rev., vol. 40, no. 4, 2006.

[39] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with rocketfuel," in
SIGCOMM, 2002.

 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 57/57

[40] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: Modeling design
and experimental results," IEEE Journal on Selected Areas in Communications, vol. 20,
no. 7, 2002.

[41] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for general cache
networks," in IEEE INFOCOM, 2010.

[42] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatrianin, “Watching television
over an ip network," in Proc. of Usenix/ACM SIGCOMM Internet Measurement
Conference (IMC), 2008.

[43] Nielsen, “How DVRs Are Changing the Television Landscape," Nielsen Company,
Tech. Rep., April 2009.

[44] J. Wu and B. Li, “Keep Cache Replacement Simple in Peer-Assisted VoD Systems,” in
IEEE INFOCOM 2009 - The 28th Conference on Computer Communications, pp. 2591–
2595, IEEE, Apr. 2009.

[45] C. Huang, J. Li, and K. W. Ross, “Peer-assisted vod: Making internet video distribution
cheap,” in Processding of IPTPS, 2007.

[46] B. Wu and A. D.Kshemkalyani, “Objective-optimal algorithms for long-term web
prefetching,” IEEE Transactions on Computers, vol. 55, no. 1, 2006.

[48] Y. He, G. Shen, Y. Xiong, and L. Guang, “Optimal prefetching scheme in p2p-vod
applications with guided seeks,” IEEE Transactions on Multimedia, vol. 11, no. 1, 2009.

[49] P. Resnick and H. R. Varian, “Recommender systems - introduction to the special
section,” Commun. ACM, vol. 40, no. 3, pp. 56–58, 1997.

