
  
     

  
 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 1/57 
 
 
 
 
 
 

Programme ANR VERSO 

Projet VIPEER 

Ingénierie du trafic vidéo en intra domaine basée sur 
les paradigmes du Pair à Pair 

Décision n° 2009 VERSO 014 01 à 06  
du 22 décembre 2009 

T0 administratif = 15 Novembre 2009 
T0 technique = 1er Janvier 2010 

Livrable 4.2 
 

Preliminary report on the CDN/dCDN design 
Auteurs : 

C. Bothorel (Telecom Bretagne), Z. Li (Telecom Bretagne), G. Simon 
(Telecom Bretagne), F. Albanese (Eurocom), P. Michiardi  
(Eurocom), J. Garnier (NDS Technologies France) 

Compilé par : 
J. Garnier (NDS Technologies France), A. Gravey (Telecom 

Bretagne) 

Juillet 2011 
 

 
Telecom Bretagne; Eurecom; INRIA; France Telecom; NDS Technologies France; ENVIVIO 



  
     

  
 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 2/57 
 
 
 
 
 
 

Résumé: (15 lignes) 
 

 

The main objective of the VIPEER project is to propose novel mechanisms to integrate traffic 
engineering (i.e. guiding the traffic where resources are available) in the current video 
streaming delivery system, so as to ameliorate the client QoE. VIPEER builds upon the 
collaboration between a traditional CDN and a peer-assisted CDN or “distributed CDN” 
(dCDN), i.e. an overlay controlled by the network operator using P2P paradigms. This 
document presents two approaches for coordinating a classical distribution via a CDN with 
distribution architectures implemented within the ISP.  
The first approach builds upon P2P aided content distribution, whereas the second builds 
upon CCN based content distribution. The efficiency of both approaches is assessed by 
models, simulations and experimentations. Their efficiency is shown to depend on the 
popularity of distributed contents.  
The reported studies show that both approaches may benefit from content-oriented caching 
strategies, and in particular “pre-fetching” which consists in replicating content in the dCDN 
nodes before they are requested based on their popularity. In order to implement prefetching 
capabilities, we need to analyze users’ behavior. The last part of the deliverable describes 
datasets we plan to use to analyse prefetching techniques.  
 
Keywords: Content Delivery Network, P2P, Content Centric Network, Peer Assisted 
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1 Preface 
1.1 Purpose of this document 
This document aims to present the approach for the design of the dCDN. Based on the state of 
the state of the art, we have identified two differents approachs for the design:  

• The first approach, CYCLOPS, builds upon P2P aided content distribution. With 
CYCLOPS, the CDN server is able to adjust the CDN-to-ISP bandwidth utilization so 
as to achieve a specific objective based on a feedback signal related to the 
performance of content distribution.  

• The second approach builds upon CCN based content distribution. This approach is 
called CCN+: cooperative caching policy based on CCN Paradigm. CCN+ relies on 
the storage capacity of a set nodes within the ISP to minimize the amount of queries 
for video streams to be treated by (CDN) servers outside the ISP network. 

The reported studies show that both approaches may benefit from content-oriented caching 
strategies, and in particular “pre-fetching” which consists in replicating content in the dCDN 
nodes before they are requested, based on their popularity. For CYCLOPS, it is necessary to 
understand how to feed the swarm and which contents to choose. For CCN+, we think that 
hybrid caching policies combining passive caching policies with prefetching strategies would 
improve performance. In order to implement prefetching capabilities, we need to analyze 
users’ behavior. The last part of the deliverable describes datasets we plan to use to analyse 
prefetching techniques.  
 
1.2 Referenced VIPEER deliverables 
Table 1 lists documents and other reference sources containing information that may be 
essential to understanding topics in this document. 

Table 1 : Referenced VIPEER deliverables 

No. Designation Title 

1. D4-1 State of the Art 

  
 

1.3 List of Acronyms 
 

Term Definition 

AS Autonomous Systems 

AMI Amazon Machine Image 

AWS Amazon Web Services 
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Term Definition 

BT BitTorrent 

CCN Content Centric Network 

CCS Collaborative Content Store 

CDN Content Delivery Network 

CR Content/Caching Router 

CRT Collaborative Router Table 

CS Content Store 

dCDN Distributed CDN 

DoS Denail of Service attack 

Ebone European Backbone 

EC2 Elastic Computing Cloud 

ECDF Empirical Cumulative Distribution Function 

FIB Forwarding Information Base 

ICT Information and Communication Technologies 

ISP Internet Service Provider 

LAP Label Allocation Process 

LFU Least Frequently Used 

LRU Least Recently Used 

OF On-line Feedback 

PIT Pending Interest Table 

POP Point Of Presence 

QoE Quality of Experience 

S3 Simple Storage Service 

STB Set Top Box 

VoD Video on Demand 
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2 The CYCLOPS approach 
In the following sections we will describe a framework, called “CYCLOPS”, that is intended 
to perform content distribution focusing on the resource utilization of content servers. 
In the context of the VIPEER project, we assume the distributed CDN (dCDN) to play the 
role of a P2P swarm interested in a particular content for download. Specifically, the CDN 
interacts with the dCDN by managing the trade-off between CDN-to-ISP bandwidth 
utilization and performance of content delivery. We present here a framework in which the 
CDN server is able to adjust the CDN-to-ISP bandwidth utilization so as to achieve a specific 
objective based on a feedback signal related to the performance of content distribution. Our 
framework is general enough to allow for many possible combinations of objectives and 
feedback signals. For instance, the objective may simply be to keep dCDN alive based on a 
feedback signal indicating the level of redundancy for particular pieces of content in the 
dCDN. Alternately, the objective may be to ensure a desirable level of service based on a 
feedback signal gauging average delivery time to clients.  

At the moment, we address the simpler case of the bulk transfer of data, not streaming. 
However, CYCLOPS offers space of maneuver for the adaptation of streaming strategies. 

As discussed in the description of work of the project, the content servers inject content in the 
ISP network toward clients that consume it; the servers location can be either within the ISP 
network - as part of the dCDN - or can be external, e.g., in the case of servers operated by a 
third-party CDN. 

The mechanism discussed in the following takes up the problem of gauging the resource 
utilization - namely bandwidth - of content servers: our approach proves useful in both cases 
of server location: 

• In the case of a content server within the ISP, CYCLOPS reduces the resource 
utilization, offloading the content distribution to already available, yet unexploited, 
network components like the set-top-boxes (STB).    

• In the case of a content server of an external CDN, our approach reduces the costs that 
the ISP incurs to use its transit links to fetch the content. 

The remainder of the document is organized as follows: first we provide the motivations for 
our work, geared toward Cloud-Based content distribution. We then move to provide the 
intuitions, which stem from a mathematical model of content distribution, behind our scheme. 
Finally, we describe CYCLOPS in details and develop a methodology for an experimental 
evaluation of our mechanism. 
 
2.1 Motivations 
Cloud computing has emerged as a compelling paradigm for deploying Information and 
Communication Technology (ICT) solutions on the Internet, because it enables solution 
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providers to easily scale up or down, or migrate their offerings seamlessly across resources – 
compute servers, storage, platforms, and services – offered by one or more cloud providers, 
yielding significant cost savings due to economies of scale. More importantly, the elasticity of 
the “pay-as-you-go” paradigm enables solution providers to reign in operating costs, 
especially when demand is highly dynamic, or unpredictable. For many cloud-based ICT 
solutions, gauging demand is straightforward. For instance, a cloud-based web 
hosting/caching solution can easily gauge demand – and hence scale up or down its use of 
elastic cloud resources – by observing the number (or average response time) of its web 
transactions. 

Increasingly, however, cloud-based solutions are evolving from simple client-to-cloud 
interactions (reminiscent of the traditional client-server model) into swarm-to-cloud 
interactions, wherein the cloud-based solution is not merely responding to individual client 
requests, but rather to the collective demand of a “swarm” of clients, making the 
determination of what constitutes demand for cloud resources for purposes of elastic resource 
allocation far more complicated. In the following sections, we propose a general framework 
and present a prototype implementation that enable elasticity for a canonical “swarm-to-
cloud” application – namely peer-assisted content delivery. 
Towards Elastic Cloud-Based, Peer-Assisted CDNs: Traditional Content Delivery 
Networks (CDNs) such as Akamai [1] were conceived as special-purpose clouds catering 
almost exclusively to large, highly-popular content providers such as iTunes and CNN. 
Today, the advent of cloud-based storage and delivery solutions such as Amazon S3 [2] and 
CloudFront [2] make it possible for much smaller-scale content providers to deploy and 
elastically provision their own cloud-based CDNs in an almost real-time fashion. The major 
cost contributor for such cloud-based CDNs is off-cloud bandwidth: the bandwidth consumed 
to deliver content from the CDN content servers (in the cloud) to the CDN clients (off the 
cloud). To reduce off-cloud bandwidth, an increasing number of CDN solutions (including 
those offered by major market players such as Akamai [1], Limelight [3], and Amazon [2]) 
rely on swarm-based, peer-assisted approaches that leverage the uplink capacity of end-users 
to reduce off-cloud bandwidth consumption. This approach, which is particularly effective for 
highly popular content, can be seen as seamlessly bridging client-to-cloud and swarm-to-
cloud interactions: For less-popular content, a cloud-based, peer-assisted CDN behaves as a 
traditional (client-server) CDN system, whereas for high-popular content, it behaves as a 
peer-to-peer system. 

Existing cloud-based peer-assisted CDNs rely on swarm-based protocols such as 
BitTorrent [4]. While such protocols are quite efficient for exchanging content among peers 
(in terms of download time, resource utilization, and fairness), they are not designed to 
provide the content source with the means to gauge the marginal utility of its contribution to 
the swarm. Specifically, in our cloud-based peer-assisted CDN setting, swarm-based protocols 
do not enable the content server (in the cloud) to gauge and hence manage the inherent 
tradeoffs between off-cloud bandwidth utilization and the efficiency of content delivery. This 
is precisely the capability that the work presented in this document aims to provide.  
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Work Scope and Contributions: We present a novel framework for cloud-based peer-
assisted CDN solutions in which the content server (inside the cloud) is able to adjust the off-
cloud bandwidth it contributes to the swarm (the set of clients outside the cloud) so as to 
achieve a specific objective based on a feedback signal related to the state of the swarm. Our 
framework is general enough to allow for many possible combinations of objectives and 
feedback signals. For instance, the objective may simply be to keep the swarm alive based on 
a feedback signal indicating the level of redundancy for particular pieces of content in the 
swarm. Alternately, the objective may be to ensure a desirable level of service based on a 
feedback signal gauging average delivery time to clients. 

To establish a reference model for these as well as other combinations of objectives and 
feedback signals, we develop in Section 2.2 an analytical model that quantifies the cost-
performance tradeoff for cloud-based, peer-assisted content delivery. Our model relates off-
cloud bandwidth utilization (the cost incurred by the provider) to the average delivery time 
(the performance observed by clients). Along these lines, our findings suggest the existence of 
a quiescent (close to optimal) operating point beyond which the marginal utility from 
additional off-cloud bandwidth utilization is negligible. 

Armed with this understanding, in Section 2.3, we present the design and prototype 
implementation of CYCLOPS, a peer-assisted content delivery cloud service. The content 
server in CYCLOPS is able to modulate its bandwidth contribution to the swarm so as to remain 
in the vicinity of the aforementioned quiescent operating point – thus minimizing its cost 
without sacrificing performance. Our design relies on the feedback signal provided through an 
on-line monitoring tool, which we have implemented as part of CYCLOPS. 

To demonstrate the effectiveness of our approach, in Sections 2.4 and 2.5 we report on a 
fairly extensive series of Internet experiments, in which we compare the performance of 
CYCLOPS to those of “open-loop” swarm-based protocols used by cloud-based content 
delivery services. Our experiments are carried out both in a controlled environment (by 
delivering content to PlanetLab clients) and in the wild (by delivering content to a real 
Internet user population). These experiments show that our feedback-based approach reduces 
drastically the volume of data served from the cloud (and hence the cost incurred by the 
content provider) with negligible performance degradation. More to the point, in live 
experiments involving more than 10,000 users exhibiting highly dynamic arrival and 
departure patterns, we were able to document monetary savings of up to two orders of 
magnitudes for our system. 

 
2.2 Cost-Performance Tradeoff Model 
In this Section we develop a model that relates off-cloud bandwidth utilization by a content 
server in the cloud to the average delivery time perceived by a set of swarming users (clients) 
outside the cloud. 
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2.2.1 Model 
We consider a dynamic environment, where clients join a swarm, download the content, and 
eventually leave the system. The number of clients in the swarm is not known a priori, but it 
can be characterized by arrival and departure rates. These rates may fluctuate drastically and 
such fluctuations are typical for “hot” viral Internet content, which gets published, gains 
significant popularity fairly quickly, but eventually dies off over time. In this work, we 
assume that for the content download timescale (say minutes) they remain constant, allowing 
the system to reach a steady state in which the arrival and departure rates equalize, and 
consequently the average number of clients in the swarm is constant. 

Let N be the steady state average number of clients in the swarm, and let the content be 
divided into M independent pieces. If M>>1 then a client holds M/2 pieces on average. For 
analytical tractability, we do not model network bottlenecks or losses. 

Consider a birth-death Markov chain whose state represents k, the number of replicas of a 
single (arbitrary) piece of content. Note that one can envision an identical, independently 
evolving Markov chain for each one of the M pieces that make up the content. For a generic 
state, there are two possible transitions: (1) either the piece is replicated, resulting in a piece 
birth, and thus a transition from sk state to state 1+ks , or (2) a client holding a replica of the 
piece leaves the swarm and is replaced by a new client that does not have the piece, resulting 
in a piece death, and thus a transition from state sk to state sk− 1 . 

Let kα  indicate the average rate at which the content server injects a piece in the swarm at 
state sk . Let λ denote the piece replenishment rate resulting from client contributions: λ is 
computed by dividing the aggregate upload capacity of all N clients by the total number of 
pieces M. Both kα and λ are expressed in pieces per second. 

For sake of simplicity, we assume a random piece replication strategy: in contrast to more 
sophisticated replication strategies [5], random piece selection simplifies analysis and 
provides conservative performance bounds. Thus, the probability of choosing to replicate the 
particular piece (modeled by the Markov chain) out of the M/2 pieces available at the client is 
2/M. The probability that no client will choose to replicate that piece is ( )kM/21− , since k is 
the number of clients holding the piece in state. This yields a probability of ( )kM/211 −−  for 
going from state sk  to state 1+ks . 

To compute the transition rate from state sk  to state 1+ks  we must also account for the rate 

kα  at which the content server independently injects the piece into the swarm. This yields a 

transition rate of ( )( ) k
k α+Mλ /211 −− . Notice that state s0  is a special state in which only the 

content server can inject the piece. Thus, the transition rate from state s0  to state s1  is equal 
to the server upload rate 0α . 
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Let µ denote the client departure rate (measured in clients per second). The probability of a 
death out of state sk  is the probability that any one of the k clients holding the piece leaves 
the swarm. The probability that a given departure is by one of these k users is k/N. Thus, the 
transition rate from state sk  to state sk− 1  is given by µk/N. 

In summary, the transition rates from state sk  to state sk ' , denoted by sk , k ' , can be 
expressed as follows:  

 

 ( )( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤−

∧

−−

otherwise
Nk<k=kif
N<k<+k=kif

=k=kif

Nµk
α+Mλ·
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0
/
/211
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 (1) 

Note that, since the Markov chain is finite (N+1 states), the steady state solution exists. 
We now compute the probability 0π  to be in state s0 . For simplicity, we consider the case 

in which the content server uploads a piece at an average rate α=αk , ∀k, irrespectively of its 
state; by solving the Markov chain we get:  
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We now proceed to finding the relationship between the average server rate α and the 
mean download time. Each client obtains 1/N of the swarm’s upload capacity, which is 
M(λ+α). Since the content is composed of M pieces, the mean download time can be 
computed as T=M/(M(λ+α)/N)=N/(λ+α). This is true as long as the probability of being in 
state is small enough. If this probability increases, then we have an additional term for the 
mean time spent in state s0 : this can be computed by multiplying the probability of state s0 (
0π ) by the time spent in state 0s (1/α). Hence, the mean download time is bounded by:  

 

 
α
π+

α+λ
NT 0≤  (3) 

To illustrate the utility of this model, consider a swarm of N=100 clients downloading 
content consisting of M=2000 pieces, with a client departure rate of µ=0.5 clients per second, 
and a mean client upload rate of λ={1.5µ,3µ,6µ} pieces per second. Figure 1 shows the 
average download time as a function of the server upload rate, as predicated by Equation 3. 
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Figure 1 : Mean download time as a function of the server rate (N=100, M=2000, µ=0.5). 

Figure 1 quantifies the tradeoff between the off-cloud bandwidth utilization (i.e., the average 
upload rate α of the content server) and the average delivery rate to clients involved in a 
swarm with upload capacity λ. It shows three operating regions. The first operating region 
(left-side of the plot) is when α tends to zero, resulting in piece starvation, and a 
corresponding increase in download time. The second operating region (right-side of the plot) 
is when α tends to values that far exceed λ, resulting in a client-server-like mode of operation. 
The third and more interesting operating region is an intermediate one, within which an 
increase in α does not result in a corresponding decrease in download time. The “width” of 
this region depends on the health of the swarm, which is a function of the content popularity 
captured by the client arrival/departure rate µ, and the mean client upload bandwidth λ. For 
the particular settings used in Figure 1, this intermediate region is given by α ∈[10,1000] 
piece/sec. 

The behavior described by our model suggests the existence of a quiescent operating point 
(at the transition between the first and second operating regions depicted in Figure 1), beyond 
which the marginal utility from additional off-cloud bandwidth utilization is negligible. A 
content server operating around this quiescent point would be fully leveraging the uplink 
bandwidth of its clients, while minimizing its own cost: operating below this quiescent point 
would jeopardize performance, and operating above this quiescent point would be cost 
inefficient. 

2.2.2 Considerations 
Armed with this observation, we are now ready to describe the design and prototype 
implementation of a content server that uses a feedback signal to adjust its bandwidth 
contribution to the swarm so as to remain in the vicinity of a nominal quiescent operating 
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point. It is important to notice that the prototype we present in the following is not an explicit 
implementation of the model: the design is inspired by the key observations made above. 

While our framework allows for many combinations of objectives and feedback signals, in 
the remainder of this work we focus on the objective of maximizing the performance per unit 
cost, using the availability of content in the swarm as the feedback signal. 

 
2.3 System Design and Implementation 
We now present the design of CYCLOPS, our cloud-based peer-assisted content delivery 
service.1 

2.3.1 Overview of CYCLOPS 
As depicted in Figure 2, our CYCLOPS service consists of a content server and a swarm 
monitor, both residing in the cloud. The swarm monitor interprets the signaling messages 
exchanged between swarming clients, and generates a feedback signal that enables the content 
server to gauge the marginal utility of its contribution to the swarm. The content server 
participates in the swarming protocol to satisfy client requests, but only feeds the swarm when 
its contribution is deemed necessary (based on the feedback signal). In CYCLOPS, the swarm 
feeding rate is set to maximize the swarm performance-per-unit-cost, using the availability of 
content in the swarm as the feedback signal. The model given in Section 2.2 shows that the 
quiescent operating point for this objective is the minimum rate that avoids swarm starvation. 

  

  

                                                
1 Our CYCLOPS service can be seen as injecting bursts of content into a swarm of clients, 
just as in Greek mythology the primordial one-eyed giant Cyclopes were the source of Zeus’ 
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Figure 2 : Overview of Cyclops Architecture: The content server and swarm monitor reside in the cloud in 
distinct virtual machines, with off-cloud bandwidth used for data feed (to the swarm) and control feed 

(from the swarm). 

CYCLOPS is conceived to work with any swarm-based application/protocol that features (1) a 
coordinating entity that tracks all swarm participants, enabling them to establish peer-to-peer 
connections; (2) content that is divided into pieces to be distributed / exchanged 
independently; and (3) a control messaging scheme used by swarm participants to advertise 
piece availability. 

For practical reasons, we present our system and conduct our experiments focusing on a 
single content server, used to deliver a single content (file) to a set of clients. Problems related 
to concurrent swarms are orthogonal to our approach, and the solutions proposed in the 
literature, e.g., [6], can be integrated independently. Similarly, issues related to the efficiency 
of the distribution process, solved using approaches based on traffic locality, are 
complementary to our solution, and previous work on this topic, e.g., [7, 8], can be 
incorporated seamlessly. 

CYCLOPS was conceived and implemented as a cloud service that can be deployed on 
existing cloud platforms. Specifically, we focused on the Amazon Web Services (AWS) 
environment, and produced an Amazon Machine Image (AMI) that supports both the content 
server and the swarm monitor functionalities. We have released [9] to the research community 
the CYCLOPS AMI, along with set-up and configuration instructions. 

2.3.2 The CYCLOPS Swarm Monitor 
Swarm monitoring in CYCLOPS is achieved using a set of components residing in the cloud, 
called the On-line Feedback (OF) nodes. OF nodes connect to a live swarm, but neither 
download nor upload content: they monitor all clients in the swarm and collect signaling 
messages they exchange. Using this information, OF nodes construct snapshots in time that 
characterize the health / performance of the swarm. In our particular implementation, these 
snapshots are used to derive the instantaneous piece availability, which constitutes the 
feedback signal fed to the CYCLOPS content server using a complementary protocol. 

To ensure scalability (and seamless elasticity), we adopted a distributed design for OF 
nodes, whereby new clients joining the swarm are assigned to OF node to balance load. 
Accordingly, a swarm S is partitioned into N p  non-overlapping sets, where N p is the 
number of OF nodes in the system. Swarm partitioning is achieved using consistent hashing 
[10]: each OF node is responsible for a fraction of the key-space, defined by the client ID 
(e.g., IP address). 

2.3.3 The CYCLOPS Content Server 
The main objective of the content server is to minimize off-cloud bandwidth consumption 
without running the risk of starving the swarm. Based on the feedback signal provided by the 
swarm monitor, the content server feeds the swarm only when necessary, i.e., when piece 
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availability falls below a desirable threshold. To that end, in our design we adopted an 
ON/OFF control strategy, whereby the content server operation oscillates between two states: 
serving and idle. 

When in the serving state, the content server dedicates its full uplink capacity to serve 
missing pieces of content. By design, the server avoids injecting duplicate pieces into the 
swarm. The rationale for doing so is that the swarm participants themselves can quickly 
replicate pieces. All clients connected to the content server are induced to request the set of 
missing pieces, which constitute the serving set maintained by the content server: this is 
possible since the server masquerades as a set of virtual clients holding a fraction of all 
available pieces. This serving set is partitioned into k non-overlapping subsets that are 
announced as “available.” For instance, if the serving set consists of pieces {1,2,3,4} and k=2, 
then k messages each announcing pieces {1,2} and {3,4}, respectively, will be sent to k users 
that will eventually issue download requests. Once a piece has been served, it is removed 
from the serving set, provided that the swarm monitor has confirmed the presence of the piece 
in the swarm. When the server has finished injecting all missing pieces into the swarm, it 
transitions to the idle state. 

When in the idle state, the content server simply closes all connections to remote clients, 
and refuses any incoming connection. The content server remains in the idle state until the 
feedback signal triggers a transition to the serving state. 

 
2.4 Experimental Method and Setup 
In this section, we summarize the specifics of the CYCLOPS instance we have experimented 
with, along with various details regarding deployment on a commercial cloud. We also 
describe the three types of experiments we have conducted: two were in a controlled 
environment (involving PlanetLab clients under our control), and the third was in the wild 
(involving thousands of real Internet users accessing content we advertised and made 
available). 

BitTorrent-based Swarming: As we alluded to in Section 2.3, CYCLOPS can be instantiated 
to work with any swarm-based content distribution protocol, supporting a specific set of 
features. For experimental purposes, we created an instance of CYCLOPS that is compatible 
with the popular BitTorrent (BT) client. Note that, in all our experiments, clients execute 
unmodified BT code. This choice is partly motivated by the wide adoption of BT by Internet 
users, as well as its adoption by many cloud-based content delivery services (including 
Amazon S3 and many others [11]) as an underlying swarming protocol. The details of the BT 
protocol and algorithms are not essential to understanding CYCLOPS, thus we refer interested 
readers to [12] for a technical description of BT. Here we only mention that the coordinating 
entity that maintains the list of clients in the swarm is called the tracker, and that the two 
control messages used by BT to advertise pieces available at a client are the “have” and the 
“bit field” messages: they indicate the availability at a client of a specific (single) piece, and 
of a set of pieces, respectively [12]. 
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In the remainder of this document, we use open-loop-BT to refer to an “open-loop” 
BitTorrent swarm-assisted content delivery system, whereas we use CYCLOPS to refer to our 
“feedback-controlled” BitTorrent swarm-assisted content delivery system. 
Deployment Details: We used Amazon’s Elastic Computing Cloud (EC2) to host, on 
separate virtual machines, the open-loop-BT content server (called the seed) and tracker, and 
the CYCLOPS content server and swarm monitor. To mitigate the negative impacts on 
networking performance due to shared resources (CPU and I/O) in a virtualized environment, 
we used large EC2 instances, which were all located in a single US-based data center. Our 
open-loop-BT and CYCLOPS content servers were well provisioned, with an upload capacity 
of 2.4 Mbps. Note that, in our experiments, a single OF node proved to be sufficient to 
monitor the entire swarm fed by CYCLOPS. 
Flash Crowd Experiments: To emulate a flash crowd arrival process, we deployed a set of 
clients on PlanetLab machines, whereby all clients initiate their requests as a result of a 
centralized trigger: clients start downloading the content within 1 minute of that trigger signal. 
Once a user is done downloading the content it continues to serve other clients until the end of 
the experiment. We conducted our experiments using two flash crowd sizes of L=50 and 
L=300 clients, respectively. In order to minimize the resource utilization of PlanetLab nodes, 
we used a homogeneous configuration with an application level cap of 160 Kbps for the 
client’s uplink capacity, which is the default setting for BT. The content size was set to 50 
MB. 

Waves of Arrivals Experiments: We synthesized extreme swarm dynamics on PlanetLab, 
with the goal of studying CYCLOPS under stress: in practice, we created a scenario in which 
availability problems would hinder the content distribution process, requiring CYCLOPS to 
intervene more often than in a real swarm. The dynamics consisted of three successive bursts 
of client arrivals: a first burst of 100 clients arrive in a 10-minute span and leave after 
completing their download (within 50 minutes of arrival); a second burst of 100 clients join 
the swarm just before the mass exodus of the first wave of users. This process is then repeated 
for a third burst of arrivals. The interval between the mass exodus from one wave and the 
burst of arrivals from the next wave is set up in such a way that there would not be sufficient 
time for content pieces to propagate fully from the clients of one wave to the next (which 
should cause the swarm monitor’s feedback signal to trigger the CYCLOPS content server to 
rev up its contribution to the swarm). As before, the client’s uplink capacity was capped at 
160 Kbps, and the content size was set to 50 MB. 
Live Internet Experiments: We conducted experiments to evaluate our system under 
realistic CDN operating conditions, including web-driven arrival and departure processes for 
users drawn from a diverse set of ISPs and with diverse software settings. To do so, we 
distributed a non-copyrighted movie packed in a 350MB file. We created two distinct torrent 
meta-files (one for distribution using CYCLOPS and the other for distribution using open-loop-
BT), and we publicized both simultaneously on popular content search websites, including 
isohunt, mininova and btjunkie. We took particular care in publicizing the two torrents exactly 
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on the day of their TV broadcast. In these experiments, both the CYCLOPS and the open-loop-
BT content servers had no cap on their uplink capacity (beyond what is possible through a 
large EC2 instance), and needless to say, we had no control on the settings (or even the BT 
variants) of the clients. 

Performance Metrics: In all of our experiments, we considered two main performance 
metrics. From the content server perspective, we measured the aggregate volume of data 
uploaded during an experiment, i.e., the off-cloud bandwidth utilization. Since content servers 
are under our control, we can measure their bandwidth utilization using local log files. From 
the client side, we measured the content delivery times. For PlanetLab experiments, we did 
that by collecting application-level logs from the clients. For live experiments, where we do 
not have access to client logs, we measured the content delivery times using our swarm 
monitor, which aggregates information provided by OF nodes. The accuracy of this approach 
was validated using the PlanetLab experiments: we compared the download times computed 
using individual log files (of PlanetLab clients) to those obtained from OF nodes, and verified 
the match between the empirical cumulative distribution functions of download times for the 
two methodologies. Furthermore, to assert the statistical significance of our results, our 
PlanetLab experiments were performed five times for each configuration. 
 
2.5 Experimental Results 

2.5.1 Flash Crowd Experiments 
End-users’ performance in downloading content is expressed in terms of individual download 
times. Figure 3 reports the most important percentiles (25th, 50th and 75th) of the empirical 
cumulative distribution function (ECDF) of download times. 

  

 
Figure 3 : Flash Crowd: content download times (file size: 50MB). 
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As a general trend, we observe that the median download time of open-loop-BT swarms is 
lower than that of CYCLOPS swarms, with the gap reduced in larger swarms. The reason lies in 
the fact that an open-loop-BT seed keeps feeding the swarm during the whole experiment, 
resulting in a larger fraction of users receiving data from the content server itself (which is 
faster than the user), and hence the shorter content delivery time. Furthermore, we note that 
aside from visible but relatively small variations, the download time for CYCLOPS clients was 
less sensitive to the swarm size. 

Table 2 : Flash Crowd: average server load (file size: 50MB) 
  

  BT CYCLOPS 
  L=50 12.2 1 
 L=300 15.36 1 

   

The above explanation is further confirmed by the results in Table 2, which reports the 
average off-cloud resource utilization expressed in volume of data served by both the 
CYCLOPS and the open-loop-BT content servers, normalized by content size. An open-loop-
BT seed injects the swarm with 10–15 times the size of the original content, whereas 
CYCLOPS feeds the swarm only when necessary, which given the static nature of this 
experiment is once. These results corroborate the intuition discussed in Section 2.2. A content 
server that can gauge the marginal utility of its contribution to a swarm can settle in the 
vicinity of an operating point in which an additional expense of off-cloud resources has a 
marginal effect on the swarm performance. 

2.5.2 Waves of Arrivals Experiments 
Figure 4 shows the key percentiles of the ECDF for the delivery times experienced by clients 
in the successive waves of arrivals. In this case, the difference between the delivery times 
achieved by CYCLOPS and the open-loop-BT content servers is small: the median value of the 
distribution indicates an advantage of roughly 15% in favor of the latter. 
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Figure 4 : Waves of Arrivals: content download times (file size: 50MB). 

Table 3 shows the average volume of data served by both schemes, as well as information on 
traffic overhead (namely, volume of control messages involving off-cloud bandwidth 
resources). For CYCLOPS, we show the aggregate overhead incurred by the content server and 
the swarm monitor. For completeness, we report the feedback traffic exchanged between the 
content server and OF node, noting that these messages are exchanged within the confines of 
the cloud and hence do not entail additional costs. 

The data in Table 3 corroborates our conclusion that CYCLOPS achieves low off-cloud 
resource utilization, even when the system is artificially stressed by complex client dynamics. 

Table 3 : Waves of Arrivals: server load & overhead (file size: 50MB) 
  

  BT CYCLOPS 
  

Normalized server load 
39.86 1.5 

 Outgoing overhead 55 KB 52 KB 
 Incoming overhead 2560 KB 716 KB 
 Feedback overhead – 145 KB 

   

Next we examine the evolution in time of the feedback signal (namely, system-wide piece 
availability) generated by the CYCLOPS swarm monitor and the content server state transitions 
it triggers. Let M be the number of pieces into which a file is divided, and let I(i,t), i=1,…,M 
be the indicator function for piece i at time t, i.e., I(i,t)=1 if there is at least one copy of piece i 
at time t, otherwise I(i,t)=0. The availability feedback signal A(t) at time t is computed as:  

 ( )
( )
M
ti,I

=tA ∑  (4) 

Figure 5 shows the time-series for the swarm size, the availability feedback signal, and the 
content server state transitions induced by this signal. It shows that as soon as the feedback 
signal indicates piece starvation (i.e., availability is less than 1), the content server switches to 
the serving state and feeds the swarm. Piece availability is zero when the swarm bootstraps, 
and drops whenever clients holding the unique copy of a particular piece depart from the 
system. The content server switches from the idle state to the serving state only when 
necessary to restore piece availability to 1. Note that in this experiment we have purposefully 
created an extreme case of swarm dynamics: in a real swarm, user behavior is not as 
synchronous. 
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Figure 5 : Waves of arrivals: availability over time. 

2.5.3 Live Internet Experiments 
In the set of experiments we present in this Section, we do not control the client arrival and 
departure processes, but rather we let these processes reflect the popularity of the content we 
forged and advertised. Furthermore, clients participating in our swarms exhibit realistic uplink 
and downlink capacities, unlike our PlanetLab experiments in which all clients have the same 
uplink capacity. 

For CYCLOPS, out of a total of 7633 users we tracked, 3509 obtained the full content. All 
other users departed before finishing the download process. For the open-loop-BT content 
server, 2486 out of a total of 5044 users completed the content download. Figure 6 depicts the 
instantaneous number of users for both swarms. In our experiments, after the transients of the 
first few hours have subsided, the user arrival and departure rates within each swarm 
equalized, with approximately 35-40 users joining each swarm per minute. 
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Figure 6 : Live Experiment: Evolution of swarm size over time. 

Figure 7 shows the box-plot of the content delivery times achieved by all users that were able 
to complete the download. These results indicate that the median delivery time achieved by 
both content servers is very similar. For the CYCLOPS content server, the ECDF indicates 
longer tails: this is mainly due to a larger swarm size, which included clients with poor 
Internet connectivity. From the end-users’ perspective, the difference in the download 
performance when they are served by CYCLOPS or by open-loop-BT is negligible. 

The off-cloud bandwidth utilization, the associated volume of data and related costs supported 
by content servers underscore the superiority of CYCLOPS. Table 4 indicates that the CYCLOPS 
content server served a total of 731.6 MB of content data, while the open-loop-BT seed 
injected a whopping 133.03 GB of content data!  Table 4 also reports the overhead traffic, as 
defined in the previous section. 
These results support our conclusion that the framework discussed in Section 2.2 and the 
particular instance we presented in this work are viable candidates for real Internet content 
distribution systems. Note that both experiments lasted 38 hours, and that the swarm sizes 
allowed us to assume equivalent uplink capacity distributions for users in each torrent. 
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Figure 7 : Live Experiment: content download times (file size: 357.5 MB). 

Since we deployed our content servers on Amazon EC2 instances, we were able to quantify 
the economic value of our proposed scheme: For the experiment we carried out, the total cost 
(including overheads) for distributing the same content when using a legacy BT seed is 
roughly 180 times higher that of a CYCLOPS content server. 

Table 4 : Live Experiment: service statistics (file size: 357.5 MB) 
  

  BT CYCLOPS 
 Total number of users 2*5044 2*7633 
observed in the swarm   
Normalized server load 381.04 2.05 

Outgoing overhead 6.5 MB 0.2 MB 
Incoming overhead 160.8 MB 24.6 MB 
2*Cost of delivery 2*$ 23.73 2*$ 0.13 

   
   

2.6 Additional Considerations 
We now discuss several points that complement the work presented. We start by suggesting 
practical ideas to implement a content server with alternative objectives and feedback signals; 
then we address the case for multiple content servers and conclude with a discussion of the 
robustness of our framework against attackers aiming at thwarting the content distribution 
process. 

Dealing with alternative objectives and feedback signals: The framework proposed in 
Section 2.2 is general enough to allow many possible combinations of objectives and 
feedback signals. For example, an alternative objective may be to ensure some minimal level 
of service based on a feedback signal regarding the average delivery time of content to 
clients. The swarm monitor described in Section 2.3 can readily measure the average content 
delivery times, using the same swarm signaling traffic we discussed earlier. Indeed, clients 
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advertise whenever they receive a new content piece, information that can be simply used to 
compute the average download rate of the swarm. Based on this information, the content 
server can choose the appropriate level of off-cloud bandwidth (i.e., the cost it incurs) to 
complement the serving capacity λ of the swarm, with the constraint of remaining in the 
vicinity of the quiescent operating point discussed in Section 2.2. With reference to Figure 1, 
this approach corresponds to a content server selecting to contribute bandwidth resources that 
move across the various operating regions obtained for different values of λ. 

Dealing with alternative ways to collect feedback signals: The swarm monitor described in 
Section 2.3 is achieved using a set of OF nodes that connect to all users. We show in 
Section 2.5 that the cost of this solution, in terms of overheads, is not significant. 
Nevertheless, maintaining many connections may pose some challenges. An alternative 
solution is to use periodic sampling of the swarm state: The OF nodes, instead of connecting 
to all the users in the swarm, periodically obtain a subset of users from the tracker and 
connect temporarily to this subset to collect the information about pieces owned by the users. 
Using sampling statistics, it is possible to infer system-wide piece availability, subject to 
preset levels of confidence. Clearly, the larger the sampling set, the more precise the 
availability information: in practice, approximating data availability may yield higher server 
load, since pieces may not be detected even if they are in the swarm. 
Dealing with multiple content servers: In the previous section, we conducted experiments in 
which a single content server is deployed. There are many obvious reasons to consider a more 
general scenario involving multiple content servers. For example, a CDN operator may wish 
to use CYCLOPS on edge servers positioned in several locations so as to serve clients 
efficiently: in this scenario, end-users might be directed to their geographically closest 
CYCLOPS content server. Traffic locality to mitigate the impact on ISPs economics, calls for a 
technique to create distinct swarms. This can be achieved with techniques proposed in the 
literature without requiring any modification to the design of CYCLOPS. Alternatively, 
multiple CYCLOPS servers could be combined to contribute to the same swarm. In this case, 
such content servers would have to coordinate what content pieces they serve and when to 
avoid inefficiencies. Our current implementation does not have provisions for avoiding the 
overlap between the serving sets compiled by different content servers. That said; standard 
distributed algorithms could be easily used to manage such situations for production-scale 
systems. 
Dealing with Cloud services cost models: In this work we have demonstrated the benefits, in 
terms of bandwidth consumption, of our approach for Cloud-based content delivery. Since we 
focused on a simple objective, i.e., to keep a swarm alive, CYCLOPS exhibits an intermittent 
behavior: the system leaves the idle state only when the swarm risks starvation. Under this 
operational mode, it is natural to question whether this behavior matches current cost models 
that apply to resources rented in the Cloud. For example, the granularity for paying an 
Amazon’s Elastic Computing Cloud (EC2) instance is one hour. As such, although bandwidth 
resources are neither used nor payed for when CYCLOPS is in the idle state (probing traffic 
aside), the virtual machine is payed independently of the bandwidth consumption. 
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With respect to the above discussion, we stress that the experimental setting we used in 
this work is not intended to be deployed in production. Ideally, our system is suitable for a 
deployment with the Amazon S3 and its CDN extension (called CloudFront): in this case, our 
approach would benefit the service operator (e.g. Amazon). Alternatively, our approach is 
suitable for more elaborate scenarios in which multiple contents are distributed via multiple 
instances of CYCLOPS that coexist in the same virtual machine. In such case, the unit cost of 
the virtual machine can be amortized by having CYCLOPS content servers coordinate: when 
one CYCLOPS instance is idle, another instance can be in the serving state, if necessary. Note 
that such coordination is not trivial: the intermitted behavior of CYCLOPS is a result of swarm 
dynamics, which cannot be controlled. It is outside the scope of this work to extend the 
CYCLOPS architecture to cope with such additional complexity. 
Dealing with adversarial workloads: Denial of Service attacks as well as other improper 
behavior of end-users aiming to exploit swarm resources is a concern that has to be 
considered when embracing a peer-assisted CDN solution such as ours. Although this is an 
important problem to address, here we focus on deliberate attacks by a client (or a set of 
colluding clients) targeting the specifics of our CYCLOPS framework. Other types of attacks 
typical of P2P systems, such as Sybil or Eclipse attacks, can be solved using the techniques 
already presented in the literature [13]. We recognize two possible adversarial exploits, where 
the aim is to pollute the feedback signal computed by the CYCLOPS swarm monitor. 
In the first, an adversary may seek to consume as much off-cloud bandwidth as possible. This 
can be done by inducing the content server to detect piece starvation (when none truly exists), 
thus causing the server to wastefully inject content. Since CYCLOPS swarm monitor tracks all 
clients in a swarm, such an attack would require a colluding set of malicious users of a size 
approximately equal to the whole swarm size, which can be safely assumed impractical. 

In the second, a set of colluding users may engage in a DoS-like attack to hinder content 
distribution, by inducing the content server to conclude that the swarm is healthy (when the 
contrary is true). This causes starvation of legitimate clients. This can be solved by letting the 
swarm monitor to compute the average download rate of the swarm (as explained before in 
this Section). Based on this information, in case of content starvation, the swarm monitor may 
trigger an alarm, indicating, for instance, the less replicated pieces. 

 
2.7 Related work 
Peer-Assistance: Peer assisted content distribution have been the subject of many recent 
studies. Of these, the work of Huang, Wang, and Ross [14] could be seen as similar in nature 
to the work presented here. In that work, the authors advocate the use of peer-assisted content 
distribution by evaluating the potential gain from peer-assisted video distribution using real-
world traces of two large CDN companies, Akamai and Limelight (the underlying architecture 
of both of which they characterized). Their approach uses the model in [15] to obtain bounds 
on the server load and download times, should swarming among end-users be allowed. They 
also quantify the potential reduction in ISP peering traffic, resulting from traffic localization. 
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In the same vein, our work is based on an analytical model that gives key insights as to the 
benefits of peer-assisted content distribution (although, our focus is on bulk as opposed to 
video transfers). Beyond a “proof of concept” using a tractable mathematical formulation, we 
go one step further by presenting practical feedback-control content injection policies that aim 
to satisfy performance objectives while minimizing provider’s costs. Our implementation is 
evaluated in realistic contexts, and our results go beyond a purely theoretic estimation of the 
benefits of peer-assisted content distribution. 
Frugal Seeding: To the best of our knowledge, the only work that has a similar objective to 
ours – in terms of reducing the load/cost on a content source, albeit in a very different setting 
– is Sanderson and Zappala’s work [16]. In that work, once the seed has determined a subset 
of pieces that should be injected in a swarm, it will satisfy any number of requests for those 
pieces. As a consequence, their technique does not offer the same level of control on the seed 
workload as the policies we study in this work. Indeed, we observe that for experiments 
carried out in similar settings, our content servers inject orders of magnitude less traffic than 
what was documented in [16]. Additionally, our system does not require any parameter to be 
empirically set. 

Chen et al. [17] study the “Super-seeding” mode introduced by an alternative BT client to 
help peers with slow Internet connections perform initial content seeding. The objectives of 
“Super-seeding” are different from ours. Moreover, a number of problems due to multiple 
peers using “Super-seeding” have been reported. The work in [18] proposes a “Smart seed” 
policy, which advocates serving just one copy of each piece. Besides the fact that Smart seed 
does not take into account dynamic scenarios, it requires the modification of clients, while our 
system involves changes only to the server with no modification to the client. 
Models and Bounds: The literature is rich with analytical models that dissect many aspects 
of P2P content distribution. In [19] and [20], the authors derive lower bounds for the 
minimum content distribution time of a swarm-based P2P application: we build upon those 
works, but focus instead on the relation between the content server upload rate and the 
download rate achieved by peers. The work in [21] belongs to the family of fluid models of 
BitTorrent-like applications: however, in this model it is the number of peers (as opposed to 
traffic) in the system that is taken as fluid. The authors in [21] develop a differential equation 
for the fluid model, from which they determine the performance of the dynamic system. We 
also model content replication in a dynamic setting, but instead consider the number of piece 
replicas as the dynamic variable modeled using a Markov process. 
Bandwidth Allocation in P2P Systems: While the study of alternative mechanisms that 
improve the bandwidth allocation in P2P systems is orthogonal to our work, results from such 
studies could clearly have positive implications on content server utilization. In [6], the 
authors design a content distribution system with the objective of maximizing the download 
rate of all participants in a managed swarm. This work stems from the observation that, in 
steady state, a swarm can be in three different states: if the upload bandwidth allocated by 
content servers is insufficient, peers will not be able to fill their uplink capacity and the 



  
     

  
 © Consortium VIPEER - Livrable 4.2 – Livraison Juillet 2011 28/57 
 
 
 
 
 
 

aggregate download rate will suffer; by increasing the amount of bandwidth awarded to a 
single swarm, the content server can guide the system to operate in a regime where the uplink 
capacity of peers is gradually filled, up to a point in which also the downlink capacity of all 
peers is filled; at this point, server capacity can be diverted to other swarms. The system 
design in [6] is based on a wire protocol that induces peer participation (using virtual 
currency) to achieve a global system optimization. In our work, we focus on a different 
objective: we try and address the question of whether it is possible to optimize the bandwidth 
utilization by content servers, without negatively impacting the performance perceived by 
clients. We note that the model we use in this work can also explain, though in more general 
terms, the key intuition behind the Antfarm work [6]. 

The problem of devising efficient uplink allocation algorithms for swarm-based P2P bulk data 
transfers is addressed in [22]. Instead of using empirically set parameters, as done in BT, to 
determine the amount of uplink capacity dedicated to each remote connection, they cast 
uplink allocation as a fractional knapsack problem, and design a simple heuristic utility 
function to decide the amount of bandwidth a peer should dedicate to each remote connection. 
The focus of their work is on a cooperative P2P setting, in which peers are assumed to fully 
abide to the prescribed algorithms. 

 
2.8 Conclusion 
In this section of the deliverable, we have demonstrated that peer-assisted content distribution 
could be leveraged to supplant as opposed to supplement the content provider’s resources for 
purposes of efficient and scalable content distribution, without negatively impacting the 
performance perceived by clients. Our approach is based on a feedback-controlled swarm 
feeding mechanism, which we have modeled analytically and evaluated empirically using 
CYCLOPS – a full-fledged service that we have implemented and deployed on the Amazon 
EC2 cloud. 
Our extensive experimental results – including the live distribution of content to thousands of 
real Internet users – show that CYCLOPS achieves enormous cost savings for the provider (as 
high as two orders of magnitude when compared to non-feedback-controlled BitTorrent-based 
services) without noticeably impacting the performance perceived by end-users. By deploying 
our servers on Amazon EC2 servers we were able to show that the mechanisms we developed 
as part of this work have a clear impact on content distribution economics, including 
significant reduction of costs for content providers, and much more efficient resource 
utilization for content hosts and distributors. 
Our on-going work is focused on exploring alternative objectives and alternative feedback 
signaling processes in CYCLOPS, as well as extensions that take into account multiple 
(possibly competing) content servers involved in the distribution of content from multiple 
sources. 
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3 CCN with Cooperative Caching 
The main objective of the VIPEER project is to propose novel mechanisms to integrate 

traffic engineering (i.e. guiding the traffic where resources are available) in the current video 
streaming delivery system, so as to ameliorate the client QoE.  

In this deliverable, we describe a cooperative caching policy based on CCN (Content 
Centric Networking [26]) Paradigm ; the cooperative caching is performed within the ISP’s 
routers, which can be considered as dCDN nodes.  

CCN is potentially an efficient solution for streaming delivery thanks to its anycast nature 
and proxy-like caching ability. However, the limited cache capacity on routers may degrade 
the performance of the whole system. Therefore, intelligent storage management is necessary 
to guarantee the system efficiency. Instead of using basic least recently used (LRU) or least 
frequently used (LFU) caching policy, we propose a new cooperative caching policy between 
content routers (CR). The aim of our cooperative caching is to reduce the amount of requests 
served by the entities outside the ISP (e.g. CDN servers). As a result, the cooperative caching 
limits CDN-to-ISP bandwidth utilization.  

In the following, we first give the motivation of our work. Then we introduce the main 
idea of the cooperative caching. Thereafter, we detail the augmented CCN protocol to realize 
our novel caching policy. We also provide theoretical analysis to show the advantage our 
proposition. Finally, the cooperative caching strategy is tested in both Catch-up TV and Video 
on demand (VoD) system to highlight the benefit for ISP. 
 
3.1 Introduction and Background 

3.1.1 Context: Content Centric Networking 
The deployment of Internet routers having caching capabilities (CR for Content or 

Caching Router [23]) represents an opportunity to revisit the techniques that are currently 
used to deliver content in the Internet. So far, the flaws of the Internet, in particular the poor 
performances of communication links traversing several Autonomous Systems (AS) [24], 
have been overcome by the deployment of large-scale CDN such as the Akamai network [25].  
The recent works toward CCN [26] introduce new techniques, which allow routing queries 
and data based on content name. These protocols enables the exploitation of the storage 
resources of any machine in the network, in particular the CR.  However, authors of CCN 
suggest using a basic LRU policy for the cache management of every CR. The current paper 
deals with a new caching policy for CR in order to build a cooperative in-network cache. This 
objective requires taking into account: 

• The distributed nature of this cooperative cache. Contrarily to the centralized 
management of CDN, the envisioned network of CR is by nature distributed: every 
CR must decide by itself whether a content that it routes should be cached. Moreover, 
a claimed objective of CCN is to retain the simplicity and scalability of current 
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Internet protocols. Therefore, CRs can only use local information in order to take their 
decision. 

• The peering relationships between ASs. The equilibrium of the whole Internet depends 
on the selfish actions of every AS. In the CCN perspective, an operator of AS becomes 
a content provider through the CRs it manages. A rationale behavior is to cache in 
priority the most expensive content, “textit-i.e.} when the path to the server storing 
this content contains expensive transit inter-AS links. 

• The small caching capacity of CRs. Studies show that video content will represent 
more than 90% of the whole Internet traffic in a few years [27]. High-definition video 
streams with bitrate in the order of megabits per seconds require storage capacity in 
the order of gigabits. In comparison, the storage capacity of CR is expected to be small 
(for example, only 36 gigabits in [23]). 

3.1.2 Our Focus: ISP-friendly Time-shifted Streaming 
We consider an ISP, which wants to minimize the cross-domain traffic related with streaming 
delivery including Time-shifted TV and VoD service. A series of recent works has explored 
CDN-based and peer-to-peer approaches for streaming delivery [27-35]. However, none of 
these solutions focuses on the cost of content delivery for the ISP. In CDN-based systems, the 
quality of the distribution is a function of the location of CDN servers, and of the efficiency of 
the query redirection mechanism forwards the appropriate server. An ISP that does not 
interact with a CDN provider is not able to manage the traffic for the end users located in its 
AS. This lack of interaction is expensive for the ISP because every request from end user is 
treated as one unique stream, resulting in larger incoming cross-domain traffic if the CDN is 
located outside of the AS. 
Peer-to-peer and peer-assisted architectures present also some weaknesses. Despite recent 
efforts toward a better interaction between ISP and peer-to-peer applications [36], the 
proposals for video streaming delivery ignore the network location of peers. Hence, it may 
happen that the video is downloaded from one or several distant peers. In our previous works 
[33], we have addressed the problem of guarantying that all past chunks are correctly kept in a 
peer-to-peer system. 

3.1.3 Our Proposal: Cooperative In-Network Caching 
Our goal is to leverage on a set of deployed CRs to minimize the amount of queries for video 
streams that are treated by servers outside the ISP network.  

In this report, we propose to replace the LRU policy of CCN by a new cooperative policy, 
with respect to the simplicity of CCN protocols. Our proposal is illustrated in Figure 8 using 
an example offering time-shifted TV service. In the example, we assume that a given stream 
is produced by a TV broadcaster. At a given time t, we consider that 21 chunks have been 
produced (from 0 to 20). Each CR has a cache capacity of 10 chunks. According to the LRU 
policy, the caches of the three CRs are filled by chunks -11 … 20}. At time t, two clients 
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request a time-shifted part of the stream, respectively from chunk 5 and 15. With the CCN 
protocol, the latter request for chunk 15 is satisfied by the CR r1, but the request for chunk 5 
has to be forwarded to the server. The lack of coordination among CR results in an inefficient 
caching strategy with redundant data stored on adjacent CRs. 
 

 
Figure 8 : Example of cooperative cache 

Our proposal is that a CR does not cache all the chunks that it routes, but only part of them.  
Every CR is associated with a label, which is a positive integer smaller than a fixed integer k. 
Every CR uses the LRU policy only for chunks whose number modulo k is equal to its label. 
In our example, we assume that k is equal to 3, and every CR ri is associated with label i. 
Them, the CR r0 stores the chunks -0,3,6, … ,18, which correspond to the 10 last chunks 
routed by r0 such that their chunk numbers modulo 3 are equal to 0. With this strategy, the 
request for chunk 5 is not forwarded to the server, but directly satisfied by r2. In parallel, the 
request for chunk 15 is no longer treated by r1, but r1 forwards the request to r0, which stores 
this requested chunk. With this cooperative in-network caching strategy, machines in the AS 
of the end users treat both requests. 

3.1.4 Our Contributions: Algorithms and CCN Protocol 
In this report, we do not describe all aspects of this proposal. In particular, we do not detail 
how an ISP notifies all CRs that are under its control about the set of streams that have to be 
stored for the purpose of a time-shifted service. This notification contains (i) the name of 
these streams, (ii) the amount of storage space devoted for these streams, and (iii) the number 
of different labels k. We focus on following contributions.  
First, we give a theoretical focus on the initialization stage, the phase during which each CR 
determines its label. A trivial implementation consists in a random choice. In previous works, 
we have shown that significant gains can be obtained from a label assignment that takes into 
account the network linkage among CRs [37]. However, the optimal assignment has been 
shown to be NP-complete. We present in the current paper a distributed algorithm that allows 
each CR to determine its label, this assignment of labels being not worse than ((3/2)k-5/2) of 
the optimal assignment. 

Second, we describe an augmented version of the CCN protocol that implements our 
cooperative caching strategy. We show in particular that the protocol keeps the simplicity of 
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the original CCN protocol. We present the refinements that are necessary to implement the 
cooperative caching. 

Then, we use simplified network models to explain the advantages of our cooperative caching 
policy on a non-cooperative one. In particular, we show that cooperative caching improves the 
hit rate for middle popular videos. 
Finally, we show some simulation results. We enhanced the open-source CCNx prototype by 
integrating our cooperative caching policy. User behavior is simulated by synthetic traces 
provided in [33] for time-shifted TV and statistics reported in [38]. We used an ISP topology 
measured by Rocketfuel [39].  
The performance improvement due to cooperative caching are impressive. For example, 
assuming that the ISP reserves 1 gigabytes of cache for streaming delivery service, the 
cooperative caching strategy is shown to perform 60% better than the LRU policy. 
 
3.2 Network Model 
We consider a network N consisting of a set of routers, and a set of bidirectional links 
between these routers. We note by V the subset of routers that are CR (i.e. having caching 
capacity); those routers are the dCDN nodes. We assume that the ISP is able to compute a 
static “distance” dij between two CRs ri and rj. This “distance” represents the connectivity 
between two CRs. Examples of such “distance” metrics are :  

• the length of the shortest path joining ri to rj in N,  

• the inverse of the capacity of routers on this path, or  

• the average latency measured between these two routers. 
The (k-1) CRs in V that are the nearest from the CR ri are expected to cooperate with ri. Here, 
nearest means having the smallest distance. Our goal is to avoid that these CRs store the same 
chunks. We note by N(i) this subset of CRs in V, and, by extension, N[i] is the set N (i )! ri . 

In the following, we assume that non-CR routers are able to transmit the messages from one 
CR to another without troubles. The CRs do not experience failures.  
 
3.3 Initialization Stage 
Each CR should initially determine its label. Our goal is to ensure that every CR is as close as 
possible from all the labels that are different that its own label. We note by L(i) the k-1 CRs 
having the k-1 other labels and that are collectively the closest from ri.  The sum of distances 
from a given CR ri to the CRs in L(i) is called the rainbow distance of ri, and it is noted di. 
Formallydi = dijr j !L (i )

" . Determining the optimal assignment of labels, i.e. the assignment 

such that the sum of all rainbow distances is minimal, is NP-hard [37]. 
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To prove the performance ratio of our algorithm, we begin with the definition of lower bound.  
Given an instance of the problem, it is possible to determine a lower bound solution by setting 
that every CR with its k-1 closest CRs store collectively the k labels, formally L(i) = N(i) for 
every CR ri. This obvious optimal assignment is impossible in many cases, but it gives a 
lower bound. We call fractional distance, denoted bydi , the sum of the distances between a 

CR ri and its k-1 nearest neighbors, sodi = r j !N [i ]
dij" . 

 
3.4 Distributed Algorithm 
There are two rounds. First, each CR exchanges information with its 2-hop neighbors. Then, 
each CR allocates labels on its neighbors and itself. For each CR ri the first round goes as 
follows: 1) it collects from its k-1 nearest neighbors their (k-1) nearest neighbors, thus, every 
CR knows all CRs that are at 2 hops in the (k-1)-nearest neighbor graph. 2) It sends to this 2-
hops neighborhood the fractional distance .  3), then it enters waiting mode. 4) It waits until 
all two-hop neighbors having a fractional distance that is lower than  emit a release 
message. 5) It executes a Label Allocation Process (LAP), and then broadcasts a release 
message. 6) When all two-hop neighbors have sent a release message, if ri is both marked as 
saved and not assigned label, then it chooses the farthest label for itself. 
The second round, namely LAP, is label allocation. The algorithm tests the condition that no 
two CR rj and rj’ in N[i] can hold the same label. If N[i] satisfies the condition, i allocates 
labels on every CR both in N[i] and holding no label, such that no j and j' hold the same label. 
Then i marks itself as optimized. If N[i] does not satisfy the condition, i marks itself as saved. 
Note that some of the saved CRs are labeled but others not. 

Correctness and Analysis 
Provided that the algorithm runs in a correct environment, i.e., there is neither faulty links nor 
faulty nodes, it returns a solution satisfying the following conditions. First, it runs infinite 
time. Second, each CR eventually holds a label. Third, there is no missing label in the system. 
Theorem 1 The algorithm gives a valid solution in a correct environment. 

Proof. The last condition is easily satisfied when the first CR (the CR possess the local 
minimum rainbow cost) executes LAP. To show that the first and second conditions are also 
tenable, we just need to prove that i will receive all release messages from its two-hop 
neighbors in a finite time. If the algorithm does not terminate, it must be some nodes i and j 
such that i never receives a release message from j, so i never executes LAP, and broadcasts 
the release message. Yet, the fractional distance being a unique real number, there is always a 
CR with a smallest distance, which can enter LAP and broadcast the release message. This 
also leads to the fact that each CR will execute LAP. Together with the fact that the distance 
of each CR is broadcasted only once, we conclude that no CR will be in waiting mode for 
infinite time. Since the number of nodes is finite, the algorithm terminates in finite time; 
thereafter each CR holds a label. 
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Each CR executes LAP, and, as the distance function d gives a total order on nodes, no two 
nodes within two hops are local minimal at the same time, so no two nodes within two hops 
execute LAP at the same time. 

Theorem 2 For any k ≥ 3, the distributed algorithm gives a solution no more than (3k/2-5/2) 
times the lower bound. 

Proof. For an optimized CR ri’, we know that . For a saved CR ri, there are two 
cases: 1) the label on ri has been assigned by another CR, and this label coincides with the 
label held by one of its k - 1 nearest neighbors, 2) two nodes in N(i) hold the same label. 

In the first case, the label on ri has been assigned by an optimized CR ri’. It means that
, and that  because ri’ executed LAP before ri. Assume that the label of ri is 

1, and the neighbor of ri’ hosting label l is noted rj
l. Then the rainbow cost of ri can be 

calculated as follows. Since  is the nearest neighbor of ri, we have
. 

 
In the second case, there must be an optimized CR ri’ within two hops from ri, such that
. Assume that rj1 and rj2 are the two nodes that prevent ri from entering the optimized state, 
and . Without loss of generality, we can assume label 1 at j1. If ri chooses label h in 
the second phase, then h ≠ 1, as rj1 is among the nearest neighbor of ri.  According to the 
algorithm, we have . After labels allocation is finished, ri and rj1 hold 
different labels. Thus . Then the rainbow distance of ri can be calculated as 
follows: 
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As  for any k greater than 3, our algorithm gives a solution no more than 
 times the lower bound. 

 
3.5 Augmented CCR Protocol 
We start by a quick summary of the main principles of CCN. Please refer to [26] for more 
details. Then, we present the changes that we propose in order to implement our cooperative 
caching strategy. 

3.5.1 CCN in a Nutshell 
In CCN, every content is identified by a hierarchical name like URL and divided into multiple 
chunks. The content name plus a sequence number identify each chunk. When a provider 
publishes the content, the CR connected with that provider floods an advertisement of the 
content to adjacent CRs. A Forwarding Information Base (FIB) is established to redirect any 
incoming interest (a.k.a. request) toward content provider. When an interest is forwarded 
according to the FIB, an entry into the Pending Interest Table (PIT) is created to trace the 
requesting interface, so that the content can be sent back along the reverse path of interest. 
The content is then cached by the CRs on its forwarding path. If the content is requested 
again, the replica in the Content Store (CS), or cache, is directly delivered by the CR. 

3.5.2 New Tables in CCN 
In order to implement our cooperative caching strategy, we require two new tables. First, 
every CR ri maintains the information of its k-1 closest CRs in L(i) in a new table, namely 
Collaborative Router Table (CRT). There are three fields in CRT of a CR: the label, the 
identifier of the collaborative router and the interface. Thus, every CR knows where to 
redirect an interest or forward a chunk. The second table added on the basic CR is the 
Collaborative Content Store (CCS). In CCS, a CR keeps the names and the sequence numbers 
of all the chunks that may be found in its collaborative cache. When an interest arrives, the 
preference of the four prefix matches is CS match to CCS match to PIT match to FIB match. 

3.5.3 Distribute Chunks in the Cooperative Cache 
When a chunk c is sent back to consume an interest, a CR ri with label li, which receives c, 
should take a decision (whether to cache it or not) based on li, on the identifier c of this chunk, 
and the match result. We describe the action as follows: 
 

• This chunk is handled by ri, that is c mod k = li. The CR ri adds c into its cache, and 
removes the least recently used chunk. Then ri calculates a PIT match. If a PIT match 
is found, it forwards the data to the interfaces indicated by the PIT; otherwise, the 
process is finished. 

 
• This chunk is not handled by ri, which is c mod k ≠ li. The CR ri first finds in its CRT 

the router ri having the label lj that matches with the chunk c. Then ri sends the chunk c 
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to rj. Moreover, if ri finds a match in its PIT for this chunk, it also forwards c to the 
requesters. Finally, ri adds c in the CCS Table, so that later interests requiring the same 
chunk will be forwarded to rj, but no longer according to the FIB. 

 
In this scheme, each data packet should carry a random nonce to prevent broadcast storm. 
When a duplicated packet with the same nonce is received, it should be immediately 
discarded. 

3.5.4 CCS Consistency 
At every time, the CS of a given CR ri should be consistent with all the CCS tables of all CRs 
that consider ri among its closest CR. In particular, when an entry of the CS ri is discarded by 
the caching policy, the corresponding entry in the CCS of a CR rj with  should also 
be deleted; otherwise interests for the eliminated content may be lost in the forwarding 
process. For example, if rj receives an interest requiring chunk c, it finds the CCS match point 
to ri. Assume that chunk c in ri has been discarded. The CR ri forwards the interest following 
the FIB entry. If rj is an intermediate CR between ri and the corresponding server, the interest 
will be regarded as a duplicated one, and discarded by rj. Therefore, the interest for chunk c is 
lost. We should remind that the lost interest can be recognized as a duplicated one because 
every interest is given a random nonce when it is generated. 
 
To both maintain consistency and avoid increasing control messages, we use piggyback 
interest (p-interest) to carry the control information. A CR ri with label li acts as follows when 
an interest for chunk c is received:  

• The requested chunk c is handled by ri, that is c mod k = li. The CR ri first calculates 
the CS match. If a CS match is found, it sends back the data directly. Otherwise, if a 
PIT entry is found, it adds the requiring face into the pending list. If neither CS match 
nor PIT match is found, ri changes the interest into a p-interest; it generates a new 
nonce for the p-interest, and forwards this p-interest according to FIB entry. 

• The requested chunk c is not handled by ri, that is c mod k ≠ li, and the interest is a p-
interest. The CR ri needs to determine whether the CR ri indicated in the p-interest is 
in the CRT of ri. When rj is not the relative collaborative router, ri executes normal 
process. Otherwise, ri should eliminate the CCS for the chunk required in the interest, 
and then adds the requiring face in its PIT. Finally, ri forwards the interest according 
to the FIB, even if PIT already existed. The final step ensures that the interest arrives 
at a provider. 

• The requested chunk c is not handled by ri, that is c mod k ≠ li, and the interest is not a 
p-interest. The CR ri just executes the normal CCN process (collaborative CS match is 
preferred than PIT match, and PIT match is preferred than FIB match). 
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3.6 Analysis of Cooperative Cache 
We now use some network models in order to highlight the advantages provided by this 
cooperative caching policy. Although the analyzed structures are simple, the real network can 
be seen as a combination of them. The performances of LRU policy have been previously 
studied in [18,19]. We extend our analysis based on the results presented in [40]. The first 
model contains several caches directly connected with a server. The two approaches are 
shown in Figure 9 & Figure 10: 
 

 
Figure 9 : Individual caches connected to a server 

 
 

 
Figure 10 : Cooperative caches connected to a server 

In Figure 9, k homogeneous caches with cache size C are connected with the server. Each 
cache receives requests for segment i with the same request rate λi. If i is not stored in the 
cache, a cache miss happens. The cache miss rate for segment i is denoted as λi

0. Following 
the results in [40], the total cache miss rate of the k caches is , where  
is the maximum inter-arrival time between two adjacent cache hits for segment i. 
 
In Figure 10, the k homogeneous caches work cooperatively. Each cache stores distinct 
chunks and form a cooperative group with cache size . Although the cache replacement 
policy of the cooperative group is not exactly LRU, we approximate the group as a single 
cache using LRU policy. The cache miss rate generated by the cooperative group is denoted 
as .  
 
Theorem The cooperative group caching achieves at least the same performances as the 
individual caches. 
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Proof. We need to prove that  for any  and .  We begin our proof 
from the fact that the function  is continuous and monotone decreasing. The 
function  is also continuous and monotone decreasing since 

 is the sum of . According to [40],  and  can be calculated by the following two 
equations. 

 
Minus equation (2) by equation (1), then we have: 

 
Since  and , we can obtain: 

 
As  is monotone decreasing, we conclude that  Because  is also monotone 
decreasing, we know that: 

 
Multiply both sides of equation (5) by , the proof follows 
 
Another structure is the tandem of k caches shown in Figure 11. The request rate from client 
for i at each cache is still identical and denoted as λi. Instead of forwarding the missed stream 
directly to the server, the missed stream is passed to the next hop cache in the direction of the 
server. Since only the kth cache is connected with the server, the missed stream λ0

ki of the 
cache k is the missed stream of the multi-cache system. Therefore, the breakthrough point is 
to find the expression of λ0

ki. Although the structure is simple, it is not trivial to deduce λ0
ki, 

since the exact distribution function of the missed stream  contains infinitely many terms 
[40]. Consequently, we cannot deduce the exact miss rate for these objects because of the 
computational complexity. The only knowledge we have is that the incoming request rate at 
the kth cache is , where l is a constant and . Let us regard the miss rate 
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as a function f0
ki of λi, then we have . Recall that the miss rate of 

cooperative caching is . 

 
Figure 11 : Caches in tandem 

 
Theorem The maximum miss rate of cooperative caching is less than the tandem of caches 
working individually. 
 
Proof.  We need to prove that, for any  and , we have max(f0

ki) ≤ max(fi'). 
The value of  can be calculated as follows: 

 
Instead of directly comparing  with , we use another variable  and setup the equation 
below: 

 
Since k ≥ l, combining equation (6) and (7) we have . Applying the same method in 
the proof of theorem 1 on equation (7) and (2), we can obtain that . Thus, we have

. 
Let the first deviation of f0

ki = 0, that is:  

 
then we have . Since the second derivative of f0

ki is less than zero, we know that 
max . As the same reason, we have max  . Since , we 
conclude that max(f0

ki) ≥ max(f'i). 
 
Please note that, the exponential part of f'i decreases more rapidly than the same part of f0

ki, 
which means that an approach like ours is expected to have at least the same performances for 
highly popular videos, and better performances for middle popular videos. As seen in the next 
Section, experimental results confirm this theoretical analysis. 
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In conclusion, both tandem and individual models are less efficient than a cooperative policy. 
Our approach, which combines cooperative and tandem approaches, is hence expected to 
outperform the classic CCN policy. 
 
3.7 Experimental Results 

3.7.1 Simulations on Time-shifted TV 
The goal of these simulations is to evaluate the benefits one can expect from the cooperative 
in-network caching strategy for the time-shifted TV service. We develop our simulator over 
OMNET++, a simulation framework for communication networks. 
 

3.7.2 Simulation Setup 
To build a typical ISP network, we use the real backbone topology measured by Rocketfuel 
[39]. We choose 87 routers, 5 point of presences (POPs) and 161 bidirectional links with 
latencies from the AS of European Backbone (Ebone). Every POP is connected with one 
server, which stores all the produced chunks. Chunks are pushed into servers from 6 TV 
providers with different popularities. We deploy 200 clients uniformly on the access routers 
locating at the edge of the topology. We reserve 1 gigabytes in each CR to cache time-shifted 
TV streaming. The basic data unit of the TV streaming is a chunk, which contains the 
streaming for 1 minute playback. One new chunk is produced every simulation minute by 
each TV provider. We assume the streaming playback rate is 1 megabits per second, so that 
the size of one chunk is 7.5 mega-Bytes. Therefore the cache of a CR can store 130 chunks, 
approximately two hours of video. 
 
We use the same synthetic model as [33] for modeling the behavior of users of time-shifted 
services. This model is based on two measurement studies conducted in 2008 and 2009 
[42,43]. This model includes that a TV stream is divided into programs, associated with a 
genre. The popularity of programs decreases with time. Moreover, the number of clients 
varies following a given distribution. In our case, according to different hours in a day, the 
number of activated clients ranges from 20 to 180.  Every client get assigned a role: half of 
the clients are surfers (watch a same program during 1 or 2 chunks before to switch to another 
program), 40% of them are viewers (switch after a duration uniformly chosen between 2 and 
60 minutes), and only 10% are leavers (stay on a program during a time comprised between 
60 and 1000 minutes). 
 
We run our simulation for 9,000 minutes, i.e. about one week. Since six TV streams are in the 
system, 54,000 chunks are produced during the simulation. We measure in particular: 
 

• The caching diversity of the policy by counting the number of distinct chunks that is 
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stored in the network. The more distinct chunks are stored in the system; the better is 
the cooperative caching system. With 87 CRs having each a maximum caching 
capacity of 130 chunks, the maximal caching diversity is 11,310 chunks. 

• The ISP-friendliness of the policy by measuring the number of requests that are treated 
by servers outside the network. The lesser is the number of requests, the friendlier is 
the caching policy. 

 

3.7.3 Results Analysis 
We first investigate the impact of k on the performance of the system. We change k from 1 to 
6, where k = 1 is exactly the basic LRU policy. In Figure 12, we show the caching diversity at 
the end of the simulation. For any k > 2, the system using collaborative cache can keep at 
least 700 distinct chunks more than the system using basic LRU. The number of distinct 
chunks keeps increasing although it grows slower after k = 4. When k = 6, the caching 
diversity reaches 4,500 chunks, that is, the collaborative cache with k = 6 outperforms the 
basic LRU by almost 60%. As can be expected, the cooperative caching policy increases the 
caching diversity by avoiding redundant chunk caching. 
 
 

 
Figure 12 : Caching diversity: the number of distinct chunks stored in the set of CRs when the number of 

labels k varies 

 
We demonstrate the efficiency of our proposal in Figure 13, where we compare the ISP- 
friendliness of the basic LRU policy implemented in CCN to our cooperative caching strategy 
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with k = 6. In average, every server should upload 20.56 chunks by minute with the basic 
LRU system, and only 8.92 in our proposal. In other words, the ISP can expect a reduction of 
around 60% of the cross-domain traffic. 
 
Moreover, we observe that the workload in basic LRU system is not well balanced, with 
servers 3 and 5 exhibiting two times more traffic than server 4. The workload depends on the 
network topology: less CRs locate around the POP which is connected with server 4, so fewer 
requests for the old chunks, which no longer exist in the cache, arrive at server 4. The reverse 
situation, which happens on server 3 and 5 causes the unbalance of the workload between 
servers. However, in collaborative cache system, every server sustains approximately the 
same number of requests. Since most of the chunks for shifted streaming are kept in the 
collaborative cache, a majority of the requests redirected to servers are the requests for live 
streaming. 
 
To further study the popularity of chunks stored in the system, we investigate the time interval 
between last two requests for each cached chunk. This indicates the volatility of content in the 
cache: the smaller are the time intervals, the more frequent are the read-write operations on 
the cache. In average, the basic LRU policy has a more intensive usage of the cache.  We 
show the Cumulative Distribution Function of the number of chunks with regard to their time 
interval in Figure 14. A point at (40, 0.85) means that 85% of the chunks have been accessed 
at most 40 minutes ago. As can be expected, our cooperative caching policy produces a less 
intensive caching strategy. On one hand, it means that operations on the disks are less 
frequent. On the other hand, the content would have higher probability to be removed if ISP 
were unable to reserve a certain storage space in the cache because unpopular chunks should 
be replaced by other data. 

 
Figure 13 : ISP-friendliness: the number of times each server located is accessed. The smaller is the bar, 

the more ISP-friendly is the caching strategy 
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To further study the popularity of chunks stored in the system, we investigate the time interval 
between last two requests for each cached chunk. This indicates the volatility of content in the 
cache: the smaller are the time intervals, the more frequent are the read-write operations on 
the cache. In average, the basic LRU policy has a more intensive usage of the cache.  We 
show the Cumulative Distribution Function of the number of chunks with regard to their time 
interval in Figure 14. A point at (40, 0.85) means that 85% of the chunks have been accessed 
at most 40 minutes ago. As can be expected, our cooperative caching policy produces a less 
intensive caching strategy. On one hand, it means that operations on the disks are less 
frequent. On the other hand, the content would have higher probability to be removed if ISP 
were unable to reserve a certain storage space in the cache because unpopular chunks should 
be replaced by other data. 

 
Figure 14 : Cumulative Distribution Function. The y axis is the ration of chunks; the x axis is the time 

elapsed between two consecutive accesses on a CR. 

Finally, in Table 5, we compare the average response time of each request, that is, the round 
trip time between the sending of a request and the receiving of the corresponding chunk. The 
response time in collaborative cache is just 40ms more than that in the basic LRU. Thus, our 
collaborative cache does not cause any significant degradation of the Quality of Experience.  
 

Table 5 : Comparison of Response Time and Requested Time Interval 
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3.7.4 Simulations on VoD service 
Different from the simulation on time-shifted TV, we implement our cooperative caching 
policy into the open-source CCNx code and test the augmented daemon on VoD service. For 
the portability of the program, we have not changed the original cache organization. Instead, 
we mark the undesirable chunks as stale, so that the chunks with c mod k ≠ l are eliminated 
from the cache right after it is forwarded. The label of each router is assigned and published at 
the beginning of the simulation. 

Simulation Setup 
Our modified CCNx prototype is deployed on 40 machines with dual 2.70 GHz Pentium 
processor and 4 GB RAM. Each machine uses Ubuntu 10.04 system and is connected to a 
switch via 100 Mb/s Ethernet card. The ISP network is still emulated according to Ebone. 
Every machine works as a router in the network. The routers are interconnected by 80 
bidirectional links with negligible delays. Among the 40 routers, 20 of them act as edge 
routers, with the responsibility to emit the requests from 1000 end users, and 3 routers run as 
point of presences (POPs). Servers are assumed to be just near these POP routers. 

Initially, servers publish all the chunks for the 500 available videos. The size of each video 
varies uniformly from 60 to 120 chunks. We limit the cache capacity of every router to 100 
chunks. 
We model the user behavior following the statistic conducted in [38]. More precisely, the 
number of users to activate and the daily access pattern are based on the formulas given in 
[38]. Once a client is activated, it chooses a video based on a Zipf’s law with the skew factor 
equal to 1. The duration for each watching session is as follows: 50% of sessions end in 10 
minutes, 75% of them stop in 25 minute, 90% of them terminated in 50 minutes, and the rest 
sessions last until the end of the video. We run our simulation for 10,000 minutes, i.e. about 
one week. Besides the overall chunk diversity and ISP-friendliness, we examine the result for 
the per-video caching diversity, which is the percentage of chunks (including replicas) 
belonging to each video that are cached. The increment of chunks of middle popular videos 
alleviates the server load since more than 40% of requests ask for the 10 most popular videos.  
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Results Analysis 

 
Figure 15 : Caching diversity varies with k 

In Figure 15, we show the caching diversity at the end of the simulation. Different from the 
result obtained in time shifted TV system, the diversity augments regularly with the increment 
of k. When k = 6, the caching diversity reaches 1,050 chunks, that is, the cooperative cache 
with k = 6 is almost 1.5 times the diversity of the basic LRU policy. As can be expected, the 
cooperative caching policy increases the caching diversity by avoiding redundant chunk 
caching. 

 
Figure 16 : Chunk distribution of the 10 films 
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Then we study the per-video caching diversity. We focus on the influence of cooperative 
caching on the 10 most popular videos that attract a lot of requests. As seen in Figure 16, 
while the number of stored chunks from the two most popular videos decreases, while it 
increases from the third to the eighth most popular videos. That is, the aforementioned higher 
diversity focuses on the chunks from these middle-popular videos, frequently accessed, but 
not necessarily considered as blockbusters. For the long tail, as shown for the ninth and tenth 
most popular video, the caching policies have approximately the same behavior. These 
experimental results are consistent with our theoretical analysis in the previous section.  

Finally, we highlight the efficiency of our proposal in Figure 17, where we compare the ISP- 
friendliness of the basic LRU policy implemented in CCN to our cooperative caching 
strategy. In average, every server should upload about 150 chunks by minute with the basic 
LRU system, and only 52 chunks in our proposal with k=6. In other words, the ISP can expect 
a reduction of more than 60% of the cross-domain traffic. 

 
Figure 17 : Number of times each server is accessed 

 
3.8 Conclusion 
This section of the deliverable focuses on the impact of a novel cooperative caching policy on 
the benefit of an ISP. The ISP is supposed to use CCN infrastructure to deliver video streams. 
In the basic CCN design, the simple LRU or LFU policy is propose to manage the storage 
space. We show by our experimental results that our cooperative caching strategy can reduce 
60% the requests that go out of the ISP comparing with the original CCN. So that the 
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proposed cooperative caching significantly save the cost for the ISP offering both time shifted 
TV and VoD service. 

Our future work is to further improve the augmented CCNx daemon, try to integrate different 
caching policy (i.e. LFU, k-LRU) into our cooperative caching and compare the performance. 
On the other hand, deeper theoretical study on the multi-caching system is also interesting. 
 
4 Real Datasets for prefetching and simulation 
The peer-assisted network has to optimize the offer of peer-cached contents to face the 
demand. In the previous sections, we discussed the CYCLOPS approach, where a server feeds 
peers with contents, and where a monitoring mechanism controls its bandwidth contribution 
to the peers so as to minimize a cost without sacrificing performance.  
We also propose a CCN+ infrastructure to deliver video streams and a cooperative caching 
approach. The preliminary experimental results are encouraging. We plan to integrate 
different caching replacement policies such as LRU, k-LRU.  

For both approaches, we may introduce content-oriented caching strategies. For the first one, 
a question could be how to feed the swarm, which contents choose? For the second one, we 
may envision hybrid caching policies combining passive caching policies with prefetching 
strategies. LRU-like passive replacements are efficient to manage contents [44], especially 
popular ones. But for less popular contents, external access to the server is more frequently 
needed. A solution to address this issue is the prefetching of contents in extra caches [45-47].  

We are indeed working on techniques to pre-load in the peer-assisted network the contents 
that are to be downloaded, and then reduce the requests that go out of the ISP domain.  

In order to provide prefetching capabilities, we need to analyze users’ behavior. The richer the 
learning dataset is, the more accurate the predictions of future behavior will be. Such rich 
dataset will allow us to compute similarities between VoDs, predict future downloads and 
then feed extra-caches.  

We describe in this section the datasets we plan to use to compute prefetching on the one 
hand, and to test our peer-assisted networks on the other.  

4.1 A real VoD dataset 
For CCN simulations described in the previous section, we model the user behavior following 
the statistic conducted in [38]. We have now the opportunity to test on a real dataset. A 
French ISP provides us an extraction of the VoD downloading history from a regional zone. 
The commercial VoD service is legal and comes with the ISP offering.  

Let DataISP denote this dataset. For each download, the logs give the timestamp, the user ID 
and the film ID (Figure 18). 8,935 customers downloaded 108,108 VoD during 6 weeks 
(February-March 2010). 5,777 different movies were requested. 
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1265385351 c3794 f5729  
1265385362 c4058 f3344  
1265385384 c1128 f1971  
1265385404 c4687 f121  

1265385432 c1483 f2390  
 

Figure 18 : ISP VoD downloading logs: timestamp, user ID, film ID  

We detail below some aspects of the data.  
 
Downloaders’ profiles : 
 
Figure 19 and Figure 20 depict the downloading behavior during the weeks and the week-
ends. With no surprise, we see low activity during the night (1h-7h), with a slow increase 
during the day and a peak around 21h. This peak is higher for a mean weekday evening than 
for a mean week-end evening. But we observe the highest peaks on Saturday and Friday 
evenings. During the week-end afternoons, especially on Sundays, the graph shows more 
activity than during the week. 

  
Figure 19 : Downloads during the week-end or the week.  
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Figure 20 : Downloads each different day.  

 
We found 3 classes of downloaders: the “Top” ones who request 40 to 230 movies per month. 
5.6% of all the users are “Top” users. The mean number of downloads is 66 movies per 
month, or something like 2 movies per day.  

  
Figure 21 : The “Top” users who download the most.  
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Figure 22 : Downloading profile of users who downloaded only once during the 6 weeks of DataISP.  

Figure 21 and Figure 22 compare the high consumers of VoD and the ones who downloaded 
only once in our dataset. The bahavior is the same as the global one described above. Only a 
remarquable difference, in addition to the volume, is that the “Top” clients download 
significatively more in the afternoon.   

  
Figure 23 : Comparison between the downloading profiles.  

 
On the same scale of the Figure 23, we observed that “single download” users are very 
insignificant in volume of data requested. Note that 64% of the films they requested are very 
popular films, only 2% of the films they resquested are films downloaded once.  
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4.2 A dataset for prefetching 
Let DataWEB denote a dataset that comes from Flixster2, a social web site where people share 
their opinion about movies. We collected in july 2009 data where 201,107 users annotated 
38,656 different movies with 6,028,491 rates: 0 if they dislike; 5 if they like it.  
DataWEB is very interesting to study recommendation mechanisms. As the users rate all the 
movies, we can conceive and test algorithms to predict rates on movies. Traditionaly, such 
ratings are used by collaborative filtering methods [48]. Similarities of users are computed 
based on their rating behavior (e.g. Pearson correlation). Then rates are predicted on unrated 
movies, given the rates provided by similar users.  

Recommendation domain is very well studied, and the recent NetFlix challenge3 has brought 
very efficient methods. But there are still scientific issues, especially regarding the non-
popular contents for which the precision/recall highly decreases. Such movies indeed are not 
rated enough for an algorithm to build relevant similarities between users. We are interested 
in this long tail issue (French RNTI revue chapter to be published soon).  
We will propose later in the project a method to fill the extra caches dedicated to prefetching.  
4.3 Merging the datasets 

4.3.1 Popularity classification 
In both DataISP and DataWEB, 65% of the requests concern the most 500 popular movies. The 
VoD downloaded only once during the 6 weeks of logs represent 25% of all the requests in 
DataISP. Similarly, 30% of the movies have been rated once in DataWEB. Note that the volume 
of downloads of films requested once is negligible comparing with the popular ones (cf. 
Figure 24). We also observed similar power law distributions in movies popularity in both 
DataISP and DataWEB (see  Figure 24).  

                                                
2 http://www.flixster.com 
3 Netflix, Inc. organized a challenge and offered $1,000,000 to the winners who achieved a gain of 10% accuracy (RMSE measure) 
in 2009. 
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Figure 24 : Power distribution of ratings in DataWEB.  

  

  
Figure 25 : DataISP types of films: popular films and films downloaded once. The “Mid-popular” films are 

the delta between the global red line and the blue one.  

Let us consider the Popularity classification in 3 classes: “Top 500” films, “Mid-popular” and 
“Single view” films. This classification fits both real datasets.  

4.3.2 Merging method and resulting dataset 
As prefetching is facilitated by work on DataWEB, and both datasets are very similar regarding 
the popularity distribution and classes of movies, we propose to merge the 2 sets. The idea is 
to generate downloading logs from the rated movies from DataWEB with the downloading 
behavior observed in DataISP. The matching of movies is based on their popularity. In the first 
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case, the popularity is the relative number of ratings, whereas in the second case, the 
popularity is the relative number of downloads (cf. Figure 26). 
 

  
Figure 26 : Popularity merging between ISP downloaded films and Web annotated films.  

 
For each movie from DataWEB, we find the film from DataISP with the closest popularity. In 
case of conflict the correspondance is chosen randomly. In the next step, downloading history 
is assigned. As several ISP films may be attached to one Web film, we introduce temporal 
disorder to delay concomitant requests (random delay in [-20s, 20s]). 
As a result, we get a new dataset DataISP+WEB where, during 6 weeks, users download movies 
for which we know whether they were appreciated or not. As a matter of fact, this new dataset 
“only” contains 144,296 requests (to be compared with the 6,000,000 entries of DataWEB, 
Figure 27). The 38,500 web films now match the 5,800, but 30% of the 40,000 are films with 
only one rate, generating only one line in the final log file. The first 500 web top films 
generate the same amount of logs, leaving 12,300 web films to be matched with 3,800 mid-
popular films with quite low download volume. As we see in the Figure 28, the generated data 
shows similar downloading behavior than the original one shown in Figure 19.  
 

 

      
 Nb users Nb films nb downloads nb ratings           

DataISP  8,935  5,777  108,108        
DataWEB  201,107  38,656   6,028,491       

DataISP+WEB  201,107  38,656  144,296  6,028,491  
Figure 27 : Two real datasets and our generated dataset.  
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Figure 28 : Weekday and week-end downloads in the generated dataset.  

 
4.4 Conclusion 
In the previous section about CCN, the simulations were run on simulated data, reproducing 
about one week with 1,000 end users and 500 available videos (DataSIM). It would be 
interesting to test on DataISP and challenge a larger volume of data, with more popular movies 
(500 instead of 10).  

DataSIM simulates more than the downloading. It introduces the viewing duration of content. 
Unfortunately, the real datasets described in this document do not contain this information. 
But we may for example consider that a bad rate in DataISP+WEB means a short viewing 
duration.  

We are aware that the DataISP+WEB we using are not easily obtained. Hopefully, future VoD 
services will be enhanced with Web2.0 functionalities, which automatically yield this type of 
logs.  
In the next steps of the project, we will propose prefetchning mechanisms, and simulate the 
datasets described in this document. 
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