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Abstract

Developing a distributed CDN (dCDN) in the intra-domain network, which is the
main objective of the ViPeer project, clearly requires the development of some tools
and algorithms in order to improve the performance of such system by reacting to
network parameters variations. Thus, different tools and algorithms are developed
within the working group 2 of the ViPeer project. These tools will not only help
in monitoring the network but also can be used for some control actions aimed
to improve the global performance of the proposed dCDN. The present deliverable
presents, particularly, the technical specifications of the first versions of traffic clas-
sifier and of the QoE evaluation module.

Keywords: network monitoring, QoE, QoS, traffic classification, testbed
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1 Introduction

This deliverable provides the technical specifications for the different integral tools
of the global measurement infrastructure. The objective of the measurement infras-
tructure tools is to inform the network and QoS aware dCDN with useful information
about the network state and about the end user activity. These measurements, along
with QoE estimation, will not only serve as a global indicator of network perfor-
mance and customer satisfaction, but also in making long term decisions, such as the
network planning. Meanwhile, this monitoring could also help in determining both
the optimal storing strategy and the best reaction to services’ quality degradation.
The ultimate goal is to be able to optimize the distribution strategy of the dCDN
so as to minimize the impact of the dCDN on the QoS perceived by the set-top-box
owners and to maximize the QoS experienced by the dCDN’s users.

The functionalities provided by the measurement infrastructure are manifold.
The tools should be able to monitor the network parameters such as available band-
width, packet loss, delay and jitter on the access links: in particular the uplinks of
the dCDN elements that provide caching and content distribution. Moreover, it is
important to know the type of applications running on the peers. As similar net-
work performance parameters can impact QoE differently for different applications,
this knowledge about the available up/downlink bandwidth in addition to other
network performance parameters as well as the type of applications running on a
peer can help in two ways. First it can help in mapping the network parameters to
application specific QoE. Second it can help in choosing the optimal peers that can
devote a chunk of their available bandwidth without degrading their QoE. Lastly,
the tools should be able to automatically estimate of the Quality of Experience that
is delivered to the different end-user applications, taking into account the network
state in real time. This can be used for admission control and congestion control
when QoE gets degraded.

Measurement of network performance parameters is provided by state of the art
techniques such as packet pair and other techniques that can be classified as either
active or passive. The tools used for traffic classification and QoE estimation are
based on supervised learning techniques. Traffic classification can be done using
Deep Packet Inspection (DPI), but it is extremely demanding on high bandwith
links and cannot be used if the applications cipher their traffic. Thus, a classifier
based on Support vector machine (SVM) is used that employs statistical analysis of
some traffic descriptors such as packet or flow-level characteristics of first three data
packets in order to classify flows. For QoE estimation a tool called PSQA (pseudo
subjective quality analysis) based on random neural networks (RNN) is used.

More details about these tools are provided in the following chapters. Chapter
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1. Introduction

2 describes the traffic classification tool. Chapter 3 focus on QoE estimation and
Chapter 4 talks about the integration of all the tools.
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2 Technical specifications of the Traffic
Classifier

2.1 Introduction

In the monitoring architecture described in deliverable D1.2 we have suggested using
traffic composition as a useful metrics both for selecting nodes to whom one should
push video chunks and from which one should retrieve them. Indeed, using a portion
of the upload/download capacity of nodes for P2P video delivery and storage can
impact the QoS perceived by other applications that are running on a particular
host. Consequently, the available bandwith is not a sufficient metrics to make an
optimal selection of video streaming peers. One would like to have a deeper view
on the activity of nodes, in particular to know which categories of applications are
running on them. As a consequence it is useful to design an architecture that allows
traffic classification.

Traffic classification is the task of associating network traffic with the application
or category of applications that has generated it. Traditional methods for traffic
classification are based (i) either on the analysis of port numbers (ii) or on the
analysis of the application layer payload. Port numbers and payload analysis can
be used in many cases in order to identify applications. But it is well known that
these methods are not any longer fully reliable. Some applications use dynamic
port numbers or do some tunneling in order to ”hide” themselves behind other
applications. Deep Packet Inspection (DPI, that is to say payload based filtering) is
extremely demanding on high bandwith links and cannot be used if the applications
cipher their traffic. Consequently some methods have been designed in order to
identify applications without port numbers or payload inspection. These methods
are based on a statistical analysis of some traffic descriptors such as packet or flow-
level characteristics (size, timestamps).

Leveraging some previous work published in [17] the approach adopted in deliv-
erable D2.1 uses the sequence of TCP flags as traffic descriptors. More precisely the
TCP flags of the first packets of a TCP connection are used as inputs by a decision
making algorithm (Neyman-Pearson test, Maximum Likelihood criterion, ...) This
approach has been implemented in a software tool, so-called Nicofix in deliverable
D2.1., developed at Telecom Bretagne in the framework of some projects with our
students.

Although the first results were promising the method has not been considered
good enough in the general case. Indeed the dataset used for the validation in
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2. Technical specifications of the Traffic Classifier

[17] is not fully representative of Internet traffic. It is based on a measurement
campaign over an Orange GPRS network in 2006. Internet traffic over GPRS is not
as heterogeneous as ADSL traffic and this has skewed the validation of the method.
One of the challenges that lightweight traffic classification methods have to face
is the diversity of applications it should be able to classify. On the contrary in a
GPRS traffic trace dating back to year 2006 there are very few applications and
this facilitates the task of any classifier. The method has other limitations such as
its inability to deal with other traffic than TCP traffic whereas many interesting
applications are using UDP as transport protocol.

Consequently other methods have been considered for integration into the soft-
ware tool that we develop. SVM (Support Vector Machine) is often considered
as the best performing algorithm for traffic classification [18] [19][20]. We have
implemented a classifier which uses the first three data packets of a flow as traffic
descriptor and a Support Vector Machine in order to classify flows. We have checked
by extensive validation over different datasets with groundtruth identified that the
performance of the method in terms of its accuracy (i.e. classification rate) is good
as it was reported in the litterature.

The performance of different classification techniques has been deeply investi-
gated in terms of the obtained classification rates (i.e. % of flows which are correctly
associated to the generating application) . But in spite of the plethora of litterature
about traffic classification the question of how these methods must be implemented
in practice to enable online traffic analysis has not received enough attention. There
are a few studies that investigate the impact, for example, of packet or flow level
subsampling [21] or feature selection [22] on classification accuracy. But there is a
lack of litterature about boosting lightweight traffic classification algorithms with
hardware and/or software acceleration techniques.

In this chapter, we adress the design of a classifier based on Support Vector
Machines. First, we validate the accuracy of the SVM classifier for different datasets.
We first demonstrate that when the same dataset is considered both for the learning
and the detection phases, the accuracy of the SVM algorithm is good. Then we
study the stability of the SVM algorithm and its sensitivity to the learning trace
and demonstrate that extreme care should be dedicated to the design of the learning
phase. The learning phase is the calibration of traffic models (e.g. Support Vector
Machines) by analysis of traffic datasets with groundtruth established. These models
are afterwards used in order to classify new flows. We demonstrate by simulations
over different datasets that the composition of the learning trace has an impact
on the performance of the SVM algorithm. Then, we describe a community-based
learning architecture that allows building learning traces that are representative of
the network where the classification algorithm is running.

Another contribution concerns software and hardware acceleration for improving
the performance of both the learning phase and the detection phase. The training
phase of SVM can be in some cases an extremely time consuming task. In order to
speed up the learning phase we compare different software acceleration approaches:
parallelization with OpenMP on a multi-core CPU architecture and massive par-
allelization on the GPU (Graphical Processing Unit). The training phase of SVM
classification is usually performed offline and consequently there is no real time con-
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2.2. A Support Vector Machine based classifier

straint for the training phase contrary to the classification phase. But as the vol-
umes of traffic that should be treated in order to calibrate the models can be huge
it is necessary to leverage on the recent evolutions in the field of high performance
computing (HPC) in order to make the most of up to date technologies. Traffic
classification in itself must be performed on line in many cases in order to permit a
fast adaptation of the system to the results of the traffic analysis. Depending on the
point where the probe is collected a hardware accelerated classifier can be necessary.
In order to investigate the possibility of designing hardware accelerated versions of
SVM based traffic classifiers we have used NetFPGA 1G boards. NetFPGA is a
project of Stanford university with sponsoring of Xilinx among others. NetFPGA
boards are FPGA hardware boards dedicated to research and teaching in the field
of traffic processing. Two versions of boards exist: NetFPGA 1G boards with 1
Gb/sec interfaces and the new NetFPGA 10G boards with 10 Gb/sec interfaces.
The results that we have obtained are promising.

2.2 A Support Vector Machine based classifier

2.2.1 Background on SVM

Support Vector Machine [13] is a supervised classification algorithm. SVM trans-
forms a non linear classification problem into a linear one, using a so called ”kernel
trick”. Given a set of sample points in a multi-dimensional space one would like
to separate them by hyperplanes, thus defining different classes. In many cases it
is impossible to separate sample points of different classes by hyperplanes and the
separating surface is extremely difficult to compute. The idea of SVM is to map, by
means of the kernel function, training points to a transformed space of higher di-
mensionality where it is possible to find separating hyperplanes. In the target space
SVM must find the hyperplanes which separate points belonging to different classes
and have a maximum distance from misclassified points of both classes to the sepa-
rating hyperplanes. The output of the training phase is made up of the parameters
of the kernel and a set of support vectors that define the separating hyperplanes.
During the classification phase SVM simply classifies new points according to the
subspace they belong to.

SVM is often regarded as the best performing algorithm for traffic classification
[23][22] and has been adopted by several authors [24][16][15]. The accuracy depends
on the selection of the kernel functions where Gaussian kernels usually give good
results. We use in our implementations the LibSVM [25] library, which is an in-
tegrated software for support vector classification allowing multiclass classification,
learning, cross-validation and different kernel functions.

LibSVM implements different algorithms for applications of SVM to classifica-
tion, to distribution estimation and to regression problems. There exist several
algorithms for SVM based classification. We have used the C-Support Vector Clas-
sification (C-SVC) algorithm [26] that is described below.

Let us assume that we have a set of training points xi ∈ Rn, i = 1, . . . , l in two
classes and a set of indicator values yi ∈ {−1,+1} such that yi = +1 if xi belongs to
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2. Technical specifications of the Traffic Classifier

class 1 and yi = −1 if xi belongs to class 2. Let us also assume that we have selected
a function φ such that φ(xi) maps training point xi into a higher dimensional space.
The search of an hyperplane that separates points φ(xi) belonging to classes 1 and
2 comes up to solving the following optimization problem:

minw,b,ζ
1

2
wTw + C

∑l
i=1

ζi
subject to yi(wTφ(xi) + b) ≥ 1− ζi

ζi ≥ 0, i = 1, . . . , l
(2.1)

In the above equation the vector w defines the direction of the separating hyper-
plane and ζi, i = 1, . . . , l are slack variables. C is a regularization parameter that
penalizes solutions where some points are misclassified and or close to the separating
hyperplane.

w is a vector in a high-dimensional space. In order to reduce the dimension of
the optimization problem it is usual to consider the following dual problem:

minα
1

2
αTQα− eTα

subject to yTα = 0
0 ≤ αi ≤ C, i = 1, . . . , l

(2.2)

where e = [1, 1, . . . , 1]T , Q is an l by l positive semidefinite matrix with elements
Qij = yiyjK(xi, xj) and K(xi, xj) = φ(xi)Tφ(xj) is the kernel function.

The solution of the dual problem is a vector α. Once the dual problem is solved
the optimal w is given by:

w =
l∑

i=1

yiαiφ(xi) (2.3)

In the classification phase any new point x is classified according to the following
decision function:

sign(wTφ(x) + b) = sign(
l∑

i=1

yiαiK(xi, x) + b) (2.4)

The equation of the separating hyperplane is given by: wφ(x) + b = 0. x is
classified into class 1 if wφ(x)+ b is positive and into class 2 if wφ(x)+ b is negative.

In what follows we use a Gaussian kernel as good results are often obtained when
selecting this kernel. The equation of the Gaussian kernel is given by:

K(xi, xj) = exp(−γ ‖ xi − xj ‖
2) (2.5)

The training phase of C-SVC produces as an output the equation of the sepa-
rating hyperplane and the corresponding decision function.

From this simple two-classes SVM problem, one can deal with multi-class SVM
classification problems. A usual approach is the so called ”one versus one” (1 vs 1)
approach. In the 1 vs 1 approach n(n−1) two-classes SVM problem are considered,
one for each pair of classes. A training phase is performed for each two-classes
SVM problem thus producing n(n-1) separating hyperplanes . Each new point is
then classified according to each of those two-class classification problems. The final
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2.2. A Support Vector Machine based classifier

decision is taken on the basis of a majority vote, that is to say that the new point
is allocated to the class which has obtained the highest number of points.

As one can see from the above description from the above description of the
training phase (Equations 2.2, 2.3, 2.4, 2.5 ) other parameters need to be tuned ,
namely the regularization parameter C and the parameters of the kernel function (γ
in the case of a Gaussian kernel). Cross-validation aims at tuning those parameters
in order to fully calibrate the classifier. The principle of cross-validation is to test
the accuracy obtained with many different values of the parameters C and γ and
to keep the best performing selection. The state space R2 of parameters (C, γ) is
sampled thus obtaining a grid. For each point (C, γ) of this grid the separating
hyperplanes are obtained as a solution of the training phases and the percentage of
training points which are accurately classified is computed. One keeps as an output
of the cross-validation the best performing value of parameters (C, γ).

2.2.2 Accuracy of the SVM classifier

In order to assess the accuracy of the SVM based classifier we have performed
validation over three different datasets. The learning and detection phases have
been performed using the libSVM library [?]. The traffic descriptor that is used as
input to the SVM classifier is made up of the size of the first three non empty packets
of each flow, where a flow is defined as a set of packets with identical 5-tuples (IP
Src adress, IP Dest adress, Src port, Dest port, protocol).

We have used for validation three datasets with groundtruth. The groundtruth
identifies the application that has generated the traffic flow. It has been obtained
either by Deep Packet Inspection (DPI) with for example Linux L7-filter [27] or
by using a tool such as GT [28]. GT has been developed by the university of
Brescia. GT is based on the analysis of logs of system calls generated by the different
applications and their correlation with traffic dumped on one network interface of a
host machine. GT also embeds DPI with L7-filter.

The names and characteristics of the three traffic traces used as benchmarks are
listed in Table 2.1. Those three traces correspond to three very different scenarios:
campus network, laboratory environment and residential access network. As a con-
sequence the composition of traffic is significantly different from one trace to the
other.

1. The FT (France Telecom) dataset has been provided by France Telecom under
the terms of a Non Disclosure Agreement. Traffic has been dumped on one
geographical zone of an ADSL France Telecom access network and groundtruth
has been established by DPI.

2. The Ericsson dataset corresponds to some trafic that has been captured in a
laboratory environment of Ericsson research.

3. The Brescia dataset is a public dataset [28]. It corresponds to some traffic
captured on a campus network. The groundtruth has been obtained with the
GT tool of the university of Brescia.
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2. Technical specifications of the Traffic Classifier

Trace label Network of capture Number of flows
FT a DSL Link of France Telecom 304095

Ericsson Local Area Network at 12616
an Ericsson Laboratory

Brescia Campus trace generated at 112337
University of Brescia, Italy

Table 2.1: Traffic traces

The definition of classes is not universal. It mainly depends on the filters that
have been defined for packet payload inspection (DPI). In order to enable a com-
parison between traces we have merged applications into different categories of ap-
plications. The different categories of applications are listed in Table 2.2.

Class label Class name
1 Web
2 P2P download
3 Direct download
4 Streaming
5 Game
6 Mail
7 Instant messaging
8 Distant control

Table 2.2: Traffic classes

Table 2.3 provides figures of traffic classification accuracy for each of the three
traces. In this Table the accuracy represents the overall percentage of flows which
are correctly classified. We take into account all classes in this assessment of classi-
fication accuracy. It is worth noting that in this scenario the SVM model has been
trained on the same dataset as the one used for classifying flows. As one can see
from this table the performance of SVM based traffic classification is very good in
this scenario.

A global accuracy figure is usually not considered as sufficient to demonstrate
the performance of a classifier. Indeed some classes could be frequently misclassified
with not much impact on the global accuracy figure if only few flows correspond to
those classes. A usual representation of traffic classification results is given by the
confusion matrix. In this report we provide in Figure 2.1 the accuracy per category
of application, that is to say the percentage of flows of each category of applications
that has been accurately classified.

As one can see from this Figure, the accuracy of the SVM algorithm differs from
one category of applications to another and from one trace to another. The propor-
tion of a category of applications in a trace impacts the ability of the SVM algorithm
to detect it. For example, as class 1 (Web) is present with a good proportion in all
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2.3. Implementation of the SVM classifier

three traces, the accuracy of the detection is high. However, as class 4 (Streaming),
is almost absent in the three traces it has the worst classification accuracy.

Trace FT Ericsson Brescia
Accuracy (in %) 94.43 98.53 97.41

Table 2.3: Accuracy of the SVM algorithm

Figure 2.1: Accuracy per traffic class

2.3 Implementation of the SVM classifier

2.3.1 Motivations

Many factors must be taken into consideration when implementing the SVM clas-
sifier in a real network. In particular operators are very sensitive to the cost of
deploying dedicated monitoring solutions. The benefits of monitoring should bal-
ance the cost (CAPEX and OPEX) of deploying and operating such a dedicated
infrastructure. This is one of the reasons why the efforts of the academic commu-
nity in the field of network monitoring have not conducted to a bunch of commercial
products.

This pleads in favor of a solution that is based on commodity monitoring solutions
such as NetFlow. Although the input of the above described SVM classifier is a flow
level record such as NetFlow/IPFIX flow records the size of the first packets are not
included in standardized versions of flow level records. This mitigates the possibility
of deploying this classifier easily in an operated network. Despite this limitation it
is likely that an operator would prefer collecting records with commodity flow level
probes and analyzing the records at a central collector with enough computational
power. Indeed if sophisticated traffic analysis algorithms are executed at the level
of a central collector it is not necessary to deploy dedicated probes and it should be
possible to leverage on the already deployed equipments. This is why the approach
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adopted in VIPEER and described in deliverable D2.1 is in favor of a central collector
analyzing the records of many probes. From another point of view, centralizing flow
records and using one super-computer for the classification can consume important
network bandwidth for the collection of records if the system is deployed on a large
scale.

Another option is to implement a classifier for each end-point or group of end-
points (subnetwork). This would require the deployment of probes with lightweight
classification functionalities enabled and this deployment could be considered as
overly costly as these are dedicated probes. Another challenge is that, depending
where the probe is located, the data rate to be processed can be high. It is con-
sequently interesting to investigate the possibility of deploying accelerated probes.
The approach investigated in this section is to use NetFPGA boards in order to
design hardware FPGA accelerated classifiers.

2.3.2 Centralized architecture of the classifier

To run the SVM classification algorithm for different capture points in the network,
one needs to design a distributed architecture for the classifier. In this architecture
as summarized in Figure 2.2, some detection clients capture traffic in the network,
construct flow records, and send them to a centralized collector that stores them in a
detection database. After that, a detection process runs the classification algorithm
on them and stores the results in the same database. It is possible to visualize
traffic composition through a web interface to that database. The software and
data components orchestrated in the detection plane are:

Figure 2.2: Architecture of the Detection plane

• Detection Client: This software component allows to capture traffic at any
device in the network which is equipped with a DAG card. It constructs
traffic flows online from the captured packets and sends information needed
for the classification operation to a central detection collector. For example,
the detection client sends for each flow the IP addresses, ports, the protocol
and the size of first three data packets as these are the information required
by the SVM detection algorithm described is Section 2.2.
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2.3. Implementation of the SVM classifier

• Detection Collector Module: This software component runs on a central server
necessarily deployed by the organism that supports the classification architec-
ture. It receives permanently flow records from different Detection Clients
whose functionalities are described above. It inserts these flow information
into the Detection Database.

• Detection Database: It is a database co-located with the Detection Collector.
It contains information on the flows to be classified and the classification results
of flows that have been detected. This database is mainly used and updated
by the Detection Process. It is also consulted by the Detection Web Interface.

• Detection Process: This process runs on the same server as the Detection
Database. It always read flows information added by the Detection Collector
to the database. It uses the classification model provided by the Learning
Process and the Detection algorithm to give labels to different flows. These
classification results are written to the Detection Database.

• Detection Web Interface: This web interface allows users to connect to the
Detection Database and view the classification results of their own traffic.
Moreover, superusers can visualize more global results and understand the
composition of the traffic transiting in the network.

This architecture has already been described in deliverable D2.1. A first imple-
mentation of the components of the architecture has been performed by Telecom
Bretagne. A set of tests has been performed with the participation of France Tele-
com and Telecom Bretagne. In those tests the collector was located at France
Telecom (in a laboratory in Lannion) and a probe was located in a laboratory at
Telecom Bretagne. The detection clients at Telecom Bretagne sent flow records to
the Detection Collector Module at France Telecom which stored them in a detec-
tion database and processed them by the detection algorithm. The architecture was
functional but the series of tests have demonstrated the sensitivity of the classifier
to the specification of traffic models which are the outputs of the learning phase.
In section 2.4 we discuss into details a learning architecture which could enable the
adaptation of traffic models to the traffic trends of the monitored network (releases
of new versions of softwares, release of new applications, etc ...)

2.3.3 Boosting SVM performance with NetFPGA hardware implementation

As discussed in the introduction of this section another solution would be to design
probes which are able to classify traffic using a lightweight classification method
such as SVM. Those probes should be able to process traffic at wire speed if no
subsampling is envisioned. It is well known that subsampling often skews traffic
characteristics. As a consequence subsampling should be considered with extreme
care when designing a lightweight classifier. For that reason we have decided to
investigate the possibility of designing a lightweight traffic classifier without sub-
sampling and able to process traffic at wire speed.

Even if the probe is located relatively close to end-users the data rate that must
be processed is very high. As a matter of example the data rate of the Internet access
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2. Technical specifications of the Traffic Classifier

of Telecom Bretagne is close to 1 Gb/sec. An ordinary computer does not have the
interfaces and the computational power to deal with such a traffic rate. To deal with
high rate traffic, we are currently working on implementing the classification phase
on a NetFPGA [29] board. As simple calculations can be highly parallelized on a
FPGA, it should enable to process traffic on-line with a much higher bandwidth
(the NetFPGA 10G has 4× 10Gb/s interfaces). Our implementation is divided into
two blocks:

• The first block is integrated into the NetFPGA platform: it receives packets
and reconstitutes data about the size of the first packets of the flow.

• The second block is a configurable SVM classification block which receives a
vector with the set of traffic features and returns the class it belongs to. The
configuration of the block (SVM model) is stored in the RAM of the FPGA.

Our first results using a synthetic traffic generator and our implementation of
the SVM detection algorithm on a NetFPGA 1G board are promising. In fact, we
generate traffic with different types of application classes at a 1 Gbit/s rate. The
NetFPGA implementation can classify all flows online without loosing any flow and
preserves the same classification accuracy as the software implementation.

2.4 Implementation of the SVM learning phase

Up to now, we have not discussed the generation of the SVM learning model. In this
section, we study the stability of the SVM algorithm to the selection of the learning
trace and propose a community-based SVM learning architecture. An acceleration
of the SVM learning process is also proposed thanks to implementation for GPU.

2.4.1 Stability of SVM to learning trace

To ensure a good accuracy of the SVM classification, the selection of training points
should be performed with extreme care. In this paragraph, we study the impact of
the learning trace on the accuracy of the classifier. Observing the composition per-
application of real-life traffic captures, one can easily notice that it is very different
from one network to another and from one time to another. Indeed, the traffic
mix differs depending on whether it is a corporate network or a residential network,
an access network or a core network, or different geographical zones worldwide.
In our current study for instance, the three considered traces present differences
in proportions of traffic classes as shown in Figure 2.3. Some applications are even
absent in some traces. Furthermore, some traffic features such as inter-packet delays
are clearly affected by network conditions [30] whereas others such as packet sizes
should remain more stable [23] [31] [18]. Moreover, the composition of the traffic
changes permanently as applications appear/disappear with time[32] or as important
releases of softwares are distributed [33].

To measure the stability of the SVM algorithm, we run extensive experiments to
classify traffic flows of every trace using models computed on other learning traces.
In Table 2.4, the accuracy of the classification is displayed as a function of the

16



2.4. Implementation of the SVM learning phase

detection trace and the learning trace. It gives an idea of the global accuracy and
the accuracy of some specific class of applications (1, 2 and 7). The results show
clearly a degradation of the global accuracy when the training set is different than
the detection set. For example, the accuracy of the SVM algorithm run over the
Brescia trace dropped from 0.97 to 0.63 when the Ericsson trace is used for the
learning phase. To deeply understand the origin of this instablity, one can notice in
Table 2.4 that a difference in the proportion of Traffic classes yields an instability of
the accuracy of the SVM algorithm. For example, as class 7 is not present in trace
FT, using it as a learning trace for the Brescia trace, decreases the accuracy from
0.94 to 0.72.

Figure 2.3: Ground truth composition of traffic traces

Traffic Detection Learning Trace
classes Trace FT Ericsson Brescia

All
FT 0.94 0.76 0.82

Ericsson 0.74 0.98 0.96
Brescia 0.71 0.63 0.97

1
FT 0.98 0.65 0.89

Ericsson 0.88 0.97 0.86
Brescia 0.92 0.52 1

2
FT 0.76 0.69 0.63

Ericsson 0.63 0.99 0.87
Brescia 0.54 0.89 0.93

7
FT 0.84 0.87 0.82

Ericsson 0.64 0.96 0.85
Brescia 0.72 0.91 0.94

Table 2.4: Impact of learning trace
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2.4.2 A community-based SVM learning

It is then very important to adapt the composition of the learning trace to the
composition of the current traffic in the network. This observation has encouraged
us to implement a community-based approach to the problem of training traffic
models.

To overcome the limitations of the classical classification architecture, we propose
a new decentralized architecture, which principally aims to automatize the accom-
modation of learning traces to applications running in the network. These learning
traces are obtained thanks to the collaboration of a subset of end-users. Hence, the
accuracy of the classification is boosted by having up-to-date and adequate classi-
fication models. In our architecture, there are two main planes: the learning plane
and the detection plane. As shown in Figure 2.4, the learning plane provides peri-
odically a new classification model to the detection plane. The functionalities and
components of these two planes are described later in this paragraph.

Figure 2.4: Planes of the architecture

To compute an adequate classification model, an up-to-date learning trace should
be provided to the learning process. This trace should be representative of applica-
tion classes which are generating the traffic in the monitored network. For this, some
volunteer end-users help in constructing logs of correspondances between system
calls of programs/processes and flows generated in the network with a methodology
similar to the one used by the GT tool [28] of the university of Brescia. Centralizing
this information in a global learning database, a trace constructor module can select
the more representative and up-to-date flow records and label them with application
classes. This labelling operation is done thanks to program-to-class rules updated
by expert users through a learning web interface. Figure 2.5 plots the components
of the learning plane and their interactions. These components are:

• System Calls Analysis Module: This module is run by some volunteer end-
users and aims at logging the names and times of programs/system processes
that have generated network packets.

• Learning Capture Client: this module runs on the same computer or in the
same network as the System Calls Analysis module. It has the following roles.
First, It captures traffic at the packet level using for example a DAG card or
sniffing network interfaces. Then, it constructs flow records from packet dumps
and consults the system calls logs generated by the System Calls Analysis
Module in order to build a correspondence between each flow and the name
of the program/ system process that has generated it. Finally, it sends to
the Learning Collector Module for each flow, a message with the information
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2.4. Implementation of the SVM learning phase

Figure 2.5: Architecture of the Learning plane

needed for the learning phase such as the size of its three first data packets,
the name of the program, etc.

• Learning Collector Module: this module runs on a central dedicated server.
It receives flow level records and the corresponding application names from
different Learning Capture Clients and adds these records to the Learning
database.

• Learning Trace Constructor: this module runs on the same machine as the
Learning Process. It consults periodically the Learning database to construct
an up-to-date learning trace, which it provides to the Learning process. In
this operation, the constructor respects two types of rules. On one hand,
it uses the program-to-class rules existing in the database to transform the
program/system process names to traffic classes. These rules are updated by
experts through the Learning Web Interface. On the other hand, it uses some
temporal rules to select flows that better represent the current traffic classes,
for example selecting the most recent flows as being the most representative
of current Internet usages.

• Learning Database: this database contains all information needed for the
Learning phase. It mainly includes information on traffic flows and rules to
be used by the Learning Trace Constructor module. This database can then
be co-located with the Learning Trace Constructor.

• Learning Web Interface: this web interface allows experts in traffic classifica-
tion field to fill in program-to-class rules and up-date them. Hence, it allows
to take into consideration new applications and classification strategies.

• Learning Process: this process runs on the same machine as the Learning Trace
Constructor Module. It receives periodically an up-to-date trace from this
module, on which it runs the SVM learning algorithm to provide a classification
model. This model is written to a file that is used by the Detection Process.
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2.4.3 Accelerating SVM Learning using GPU

The SVM model must be updated regularly. Indeed as new applications appear or
important releases of applications are distributed the performance of the classifier
can decrease dramatically. It is consequently necessary to maintain up-to-date traffic
models by continuously analyzing some traffic flows generated by end-users and their
associated groundtruth. One needs to run the learning process quickly to have a
good adaptation of the traffic models to the traffic generated by applications.

Many solutions can be adopted to accelerate the computation of SVM traffic
models. One can use many processors on the same machine or use grid comput-
ing (many machines) to balance the computing load on many available processors.
Multi-core or grid computing will obviously speed-up the calibration of traffic models
as they allow much faster execution than a sequential execution on a single proces-
sor. Another solution to parallelize the execution of the learning phase is to use
a single machine that is equipped with a good graphical processing unit (GPU) to
parallelize elementary computations.

GPU are high parallel graphic specialized processing units that can handle basic
calculus. Thanks to specific languages like CUDA and OpenCL, one can write non
graphic code that runs on GPUs. Although GPU are not conceived for complex
operations like CPUs, GPU can run many instructions at a time and faster when
they are provided with simple operations. Moreover, a cutting edge GPU is usually
cheaper than a cutting edge CPU. Therefore, we decided to enhance the GPUSVM
library [34] to accelerate multi-class SVM training and multi-class SVM classification
using the GPU technology.

We compare the results obtained with GPUSVM to the results obtained with the
LibSVM library.The testbed is a computer with a 2.66 GHz 6-core Xeon X5650 with
HyperThreading enabled, 12 GB of DDR3 RAM and a Nvidia 580 GTX GPU (from
the Fermi family) running a Linux 2.6.38 kernel and using a CUDA 4.0. SDK. We
compared the time taken for SVM learning and SVM classification on the Brescia
trace considering either an execution on the CPU with LibSVM or an execution on
the GPU with GPUSVM.

In table 2.4.3, we display the obtained results in order to evaluation the accelera-
tion factor obtained with the GPU. An acceleration of up to 48,59 times is obtained
for the training phase on the Brescia dataset which is already a promising result.
We think that greater acceleration factors could be obtained using multi-GPU with
a FireX technology and/or improving the way operations are balanced between the
GPU(s) and the (multiple) cores of the CPU. This is still to be considered as ongoing
work.

2.5 Conclusion

In the monitoring architecture of VIPEER, a traffic classifier allows to understand
the composition of traffic generated by end-users. This allows selection of peers
with better upload/download abilities. In this chapter, we have shown that using
the SVM algorithm yields good accuracy of classification when the training phase
is done on a well-chosen learning trace. In this chapter, we suggested a community-
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2.5. Conclusion

libsvm3.1 gpusvm acceleration

training 43 min. 47 sec. 54,08 sec. x 48,59

classification 2 min. 57 sec. 44,52 sec. x 3,98

Table 2.5: Acceleration with the GPU

based architecture to learn traffic models from real flows of the network. In addition
to the learning architecture, we implemented a NetFPFA accelerated version of
the detection phase of SVM to deal with high rate traffic when the classification
is done close to end-users. Furthermore, taking into consideration the updates of
the learning models, we implemented an SVM learning process that is massevily
parallelized on GPU to accelerate the training phase.

As a future work, we will do further tests of the community-based learning
architecture by implicating real end-users in generating traffic. This allows us to
verify the stability of the SVM algorithm. Moreover, the hardware implementation
of the detection algorithm will be implemented on a newer 10 Gb NetFPGA board.

A last important future task is to choose the application classes to consider for
the VIPEER project. One can imagine two classes of traffic: critic traffic and non
critic. Hence, one can decide whether to disturb or not a peer depending on the
bandwidth consumption of the critic traffic. We suggest to modulate the available
bandwidth provided to the dTracker knowing the composition of the traffic at end-
users.
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3 Technical specifications of the QoE
Evaluater

3.1 Introduction

HTTP-based streaming is experiencing a widespread adoption by Services’ Providers
and CDN’s operators for both mobile and fixed networks. Thus, content providers
are increasingly becoming interested in evaluating the performance of such applica-
tions from the final users’ perspective. Indeed, more importance is being attached
to the quality as perceived by the final users, or Quality of Experience (QoE), as
compared to just Quality of Service. In fact, with HTTP streaming, it is possible
to have a very bad QoS, but a good QoE, since HTTP provides a reliable mean of
transportation. This can happen for example when the QoS parameters are packet
loss rate and packet delay. In that case, even if there will be some packet loss and
delay reflecting bad QoS, the HTTP streaming, with TCP retransmissions, will still
be able to provide good QoE, at least for up to some values of these parameters.

In light of the above observations, the main concerns of this section is to de-
sign a no-reference QoE monitoring module for HTTP/TCP video streaming using
H.264/AVC video codec in the context of IPTV. The proposed approach uses a
methodology called Pseudo-Subjective Quality Assessment (PSQA) [1, 2], which is
based on Random Neural Network (RNN) [4], to estimate the QoE of H.264 streamed
over HTTP. In this work, instead of packet loss pattern and latencies, we consider
the Quantization Parameter (QP) used in video compression and the playout inter-
ruptions as metrics that directly impact QoE. Indeed, when using adaptive HTTP
streaming the perceived quality depends directly on QP, which reflects changes in
quality (i.e. change from high to low quality or vice versa), and on the playout
interruptions.

Note that none of the existing approaches addresses the problem of measuring
QoE with the combined case of adaptive video bitrates and using a reliable transport
protocol, which is the case of the adaptive streaming over HTTP.

The remainder of this section is organized as follows. Subsection 3.2 focuses on
monitoring QoE. Section 3.3 presents and discusses performance evaluation results.
Finally, the section concludes in Section 3.4 with a summary recapping the main
achievements of the proposed scheme.
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Figure 3.1: Chunk-based media content format.

3.2 QoE Estimation

3.2.1 Pseudo-Subjective Quality Assessment (PSQA)

A general technology called Pseudo-Subjective Quality Assessment (PSQA) has been
proposed in [1]. PSQA is based on a specific type of queuing network used as a
learning tool called Random Neural Network [4]. For every different context, such
as when the video codec or the parameters affecting QoE change, a new PSQA
based module is to be designed after analysing the associated parameters and after
conducting new subjective tests.

The idea is to have several distorted samples evaluated subjectively by a panel
of human observers. Then the results of this evaluation are used to train a RNN
in order to capture the relation between the parameters causing distortion and the
perceived quality. In general, the distorted sequences for a test phase are generated
for a given context, and therefore a new PSQA module must be generated for every
new context.

3.2.2 Adaptive HTTP Streaming

The keen interest towards multimedia streaming over the Internet, which was clearly
encouraged by the development of easy-to-use content sharing platforms (e.g. YouTube),
is making HTTP/TCP streaming the leading technology in the media delivery sec-
tors [5] for both mobile and fixed networks. As opposed to the former protocols,
HTTP enables a reliable and an adaptive streaming process. These properties are
directly inherited from those of the TCP protocol. It also allows to seamlessly
bypass firewalls and adapt the streaming quality to the bandwidth, which makes
the technology particularly interesting for a wide deployment. For adaptive bitrate
streaming, the media file to be streamed is fragmented into small segments or chunks
(see Figure 3.1) of same duration (e.g. a few seconds) [6].

In order to allow adaptive streaming, each chunk is decoded independently. This
enables seamless switching from one quality to another when network conditions
change. This is because once the playout of a chunk is finished, the video player
can start playing the next chunk of different quality as each chunk is independently
decodable.
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3.2. QoE Estimation

Table 3.1: Notations

Symbol Definition (values are implied to be measured over a fixed interval)
Davg Average value of pauses or interruptions
Dmax Maximum pause duration
N Number of playout interruptions
QP Quantisation paramter
α 1 - Davg/Dmax

MOS Mean Opinion Score

3.2.3 Input parameters for QoE evaluator

In order to use PSQA for Adaptive HTTP Streaming, first the relevant parameters
need to be identified and their effect on the perceived quality needs to be studied.
In the next step, the important parameters will have to be simulated, which will
result in distorted video sequences. These distorted video sequences will be used
to train the PSQA tool with the help of a panel of human observers. The trained
PSQA will, then, be used in real time to estimate the subjective video quality. In the
following text, we describe the parameters that are considered for QoE estimation
in the context of HTTP streaming over TCP/IP networks (see [7] for more details).
The definitions of the parameters are also provided in Table 3.1.

It should be noted that other parameters, not described below, like resolution
and frame rate are either constant in our study or, like losses, delay and jitter that
cause packets to miss their deadline, are converted into playout interruptions.

3.2.3.1 Playout Interruptions

TCP/IP networks are characterised by frequent packet losses and fluctuating band-
width over time. In opposition to the streaming over UDP, the streaming over HTTP
implies an automatic recovery of lost packets, handled by the TCP protocol. This
clearly eliminates video distortions in most of the players. However, the packets
retransmissions introduce more overhead and latencies, which, as well as bandwidth
fluctuations, may cause playout interruptions. Thus, playout interruptions should
be taken into account for QoE estimation.

We model the playout interruptions using three parameters observed during a
measurement interval containing a fixed duration of original video data (16 seconds
in this paper, but total time can be longer due to the presence of interruptions):
the total number of playout interruptions N , the average of interruption delays
(that means video pauses) Davg and the maximal interruption delays Dmax . These
parameters are normalized with the video sequences lengths to make the QoE module
more robust to configuration changes. Note that, for longer videos, a different QoE
score will be provided every 16 seconds which in turn is the granularity of the
estimation.

3.2.3.2 Quantization Parameter (QP)

In the context of HTTP streaming, another parameter that significantly impacts the
QoE is the amount of video compression that in turn is controlled by the quanti-
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Figure 3.2: Videos used for subjective testing. Source: ITU VQEG

zation. H.264 codec uses a quantization parameter (QP) to quantize the transform
coefficients obtained while encoding the video. QP ranges from 0 to 51 and the
trade-off is that a high value of QP means more loss of information and lower qual-
ity, but it also means lower bitrate; and vice versa.

For QoE estimation, we consider the average of QP values, QPavg, over all MBs
in all video frames present over the time window considered for evaluation.

3.3 QoE Evaluator

In order to generate the QoE Estimation module, 4 different video sequences of 16
seconds each were considered, as shown in Figure 3.2. The resolution is 720p, fps =
30, GOP size = 60 frames. The high profile of H.264 is used. The encoder used is
x264 [9]. The value of QP was varied from 22 to 48.

A video database was generated by simulating different combinations of the input
parameters described in previous section. The videos were then evaluated by a panel
of 15 users using single stimulus (SS) testing methodology [8]. A MOS scale of 1,
very bad, to 5, excellent, was used. The MOS scores and the corresponding values
of the input parameters were then used to train RNN. The trained RNN is used as
the QoE Evaluator as shown in Figure 3.3. More details about the RNN conception
is given in [7].

The results are shown in Figures 3.4, and 3.5, which show the estimated QoE
with respect to different pairs of parameters, the remaining ones being fixed. Fig-
ure 3.4 shows that users are more sensitive to video playout interruptions as com-
pared to an increase in QP when the value of QP is low. When QP increases or
the quality degrades due to increased quantization, initially the QoE scores fall very
slowly. Only after reaching a high value of QP, the QoE scores start to decrease
faster. Whereas, QoE drops faster with increasing Dmax , initially, but after a higher
value of Dmax the decrement of QoE becomes slow. This is because after a high
value of Dmax , around 6 to 8 seconds, the dropped QoE becomes saturated and the
users are less sensitive to further increments in Dmax .

Besides, increasing the value of QP decreases the video bitrate. Thus, when the
bandwidth decreases in the network, the QP can be increased a lot, to adapt the
streaming data rate to the available bandwidth, rather than risking even a single
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Figure 3.3: QoE Evaluator based on RNN.
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Figure 3.6: Real vs Estimated QoE scores with our QoE module.

playout interruption.
With respect to above observations, our QoE model can be integrated with the

controller of adaptive HTTP streaming. It will help the controller to make decisions
that optimize QoE by proving an estimate of QoE for a given value of QP and
network parameters.

Figure 3.5 shows the QoE with respect to Dmax and N . It can be seen that for
lower values of Dmax or N the QoE is very sensitive to both. However, for higher
values, QoE decreases very slowly because after a certain value of Dmax or N the
quality is already bad enough and users are not sensitive to further increments. Also
note that the worst value of predicted MOS in this figure is 1.5, but for such high
values of Dmax and N the MOS should be 1.0, that is the minimum MOS possible.
This prediction error of 0.5 is because RNN shows saturation near bad quality and
because while training we wanted to be accurate when quality is good instead of
being accurate when quality is already bad.

Figure 3.6 shows the scatter plot with estimated MOS versus real MOS obtained
from the subjective tests. The points corresponding to the training as well as the
validation data are shown. The scatter plot shows the good accuracy of the estima-
tion. This is also reflected by the overall Root Mean Square Error (RMSE) of 0.36
for all data (with slightly higher and lower RMSE for training and validation sets,
respectively) on the MOS scale going from 1.0 to 5.0. The RMSE is less than that
of the human test panel where it was 0.59 and thus it is satisfactory.

3.4 Conclusion

In this section, we have addressed the problem of estimating the QoE of video
streaming in TCP/IP networks. As a solution, we designed an automatic no-
reference QoE estimation module for HTTP video streaming using TCP and H.264
video codec and the trained RNN function is provided in this paper. The proposed
approach is different from the existing ones as it addresses the problem of measur-
ing QoE in the combined case of adaptive video bitrates and the use of a reliable
transport protocol. This is the case of the adaptive streaming over HTTP. Exten-
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sive simulations showed that our model accurately measures the QoE and performs
better than an existing QoE model when the value of QP is varied.
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4 Tools’ Integration within the testbed

4.1 Architecture reminder

Our goal is to integrate several functions in the measurement platform:

1. real-time determination of the network parameters such as the available band-
width, the packet loss rate, the jitter and the delay by actively probing the
access link,

2. determination of the activity of the end-user in real-time that is to say the
composition of traffic generated by this end-user in terms of applications,

3. automatic estimation of the Quality of Experience that can be delivered to the
different end-user applications, taking into account the network state in real
time.

In deliverable D2.1, we have described the corresponding architecture for moni-
toring. The picture 4.1 is a summary of it.

Figure 4.1: Proposed architecture
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As mentioned in this picture, locally we have some probes with DAG cards
that collect the traffic (passive measurements). Then, they send theirs results to the
dCollector (a central collector that will run the classification of Nicofix for example).
For more detail, see D2.1.
Now we will focus on communication between the different entities that composed
the monitoring and in the last section of this chapter, we will describe the link with
the global architecture of VIPEER.

4.2 Communication between the different entities

Probes with DAG cards measure some traffic characteristics. Then they send this
information to the dCollector. Here we explain in detail this step.
First, on the dCollector, a socket is open to communicate with the probes. We have
chosen the UDP protocol and the number 9999 for the associated port. This number
could be everything else but we have to define one so that we could block others
UDP traffic not expected (for security reason). Then others entities could send peri-
odically (say every 60 seconds) or when needed reports on this open channel. This is
for the channel of communication, and now we detail the content of these exchanges.

For the Nicofix part, the dCollector need some information to run the classifica-
tion of flows:
- the source IP address,
- the destination IP address,
- the source port,
- the destination port,
- the protocol number,
- the size of first, second and third packet.

For evaluation and demonstration issues, a step of programming is needed. The
dCollector is then written in C language. So we have the corresponding structure
for Nicofix classification:
struct classif flow {

uint32 t dst ip;
uint32 t src ip;
uint16 t src port;
uint16 t dst port;
uint8 t proto;
uint32 t nb bytes1;
uint32 t nb bytes2;
uint32 t nb bytes3;

};

For QoE purpose, the dCollector store those parameters:
- the IP address of the client (the evaluation of QoE is for him)
- the MOS score,
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- the QP parameter,
- the playout interruptions number,
- the playout interruptions time in s.

Here is the corresponding structure in C language:
struct qoe flow {

uint32 t qoe nb;
uint16 t ad client;
uint8 t mos ;
double qp;
uint32 t nb playout;
double time playout;
double date;

};

Finally, the dCollector store the monitoring metrics like available bandwidth,
delay...

We see that there are different types of information coming at the dCollector.
To know which kind arrives we have to introduce a structure in packet exchanges.
Here is the corresponding structure in C language:
//vipeer export packet format:
typedef struct vipeer packet {

uint32 t probe id; // to know from which probe the data come from
uint8 t packetType; // to know the type of information: 1,2 or 3
uint16 t data length; //if needed...
union {

struct classif flow cf; //type 1: Nicofix classification
struct qoe flow qf; //type 2: QoE
struct metrics m; //type 3: Monitoring metrics

} data;
} V PCK;

With this structure, the dCollector knows the king of information (classification,
QoE or monitoring metrics) and then, it knows how to interpret the data. We have
an extra information here: we know from which probes the information arrives and
this could be useful to aggregate some data by localisation (for example, if a lot of
clients have bad QoE in a same area an alarm could be done for this region).

After receiving the data, the dCollector could compute them to give results (like
for the Nicofix classification) and finally, the dCollector has to store all needed
results. Now, we will see the corresponding database for this purpose. As the
classification, the QoE evaluation and the monitoring metrics are independents, a
dedicated table is built for each of these goals. We begin with the table named
TAB classif dedicated to the classification of user applications, in figure 4.2.
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Figure 4.2: TAB classif

We have the needed data for the classification and we have the result of it in the
field type with a number. In figure 4.3, we have the correspondence between the
number and an understandable text.

Figure 4.3: Type classif

For the QoE, in table 4.4 named TAB qoe, we have all the needed information.

Figure 4.4: TAB qoe

All the tables are needed for ihm purpose too. For a supervisor, it is better
to have a view on graphics for example than an access to a database. So, in the
dCollector, we have a web site with these results. For demonstration purpose this
web site is open on the internet but with a secure access thanks to password. In 4.5
and 4.6 we have some examples of this friendly interface.

With the web site on the dCollector, we could have a look at results from WP2,
but these results are needed by the rest of the VIPEER project so we will explain
now how they take part in the global architecture.
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Figure 4.5: Web page for classification

Figure 4.6: Web page for QoE

4.3 Global architecture

In deliverable D1.2, there is a view of the global architecture when a user asks for
content, from the manifest negotiation to the search of content. The figure 4.7
resume this step.

As we see, the dTracker is the entity that drives the control plane by taking the
decision in the content domain: which content, where, how many representation of
it...
As mentioned before, all results from WP2 are stored in the dCollector and all these
results are in the control plane. So it is natural that dCollector and dTracker will
communicate. Two kinds of communication are considered:

1. dTracker ask the information at the dCollector when it has to take decision.
As the dCollector has database with the expected results, one can imagine that
the dTracker will ask by SQL request the online database on the dCollector.

2. dCollector compute some functions like the Nicofix classification or QoE syn-
thesis. If a part of the network has very bad conditions (poor QoE or very
low bit rate,...), the dCollector will know the situation and could warm the
dTracker. This second type could be named on events.
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Figure 4.7: Manifest negotiation and content search

4.4 Conclusion

The figure 4.8 is a good summary of the communication between dTracker and
dCollector.

Figure 4.8: Global architecture with dCollector

We can note that it is easy to implement the link between the WP2 and the
rest of the VIPEER project because all is concentrate on communication between
dCollector and dTraker.
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5 Conclusions

We presented in this deliverable the technical specifications of the tools and modules
proposed within the WP2. These tools will clearly help to improve the performance
of the considered ViPeer framework by not only serving as a global indicator of
network performance and customer satisfaction, but also by making long term de-
cisions, such as the network planning. Meanwhile, this monitoring could also help
in determining both the optimal storing strategy and the best reaction to services’
quality degradation. Besides, this will help to optimize the distribution strategy of
the dCDN so as to minimize the impact of the dCDN on the QoS perceived by the
set-top-box owners and to maximize the QoS experienced by the dCDN’s users.
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